

# MINNESOTA WHEAT RESEARCH REVIEW

ON-FARM CROPPING TRIALS NORTHWEST & WEST CENTRAL 2022

# 2022 On-Farm Trials | UMN Extension On-Farm Cropping Trials

The mission of University of Minnesota Extension and NWROC is to contribute within the framework of the Minnesota Agricultural Experiment Station (MAES) and the College of Food, Agricultural, and Natural Resource Sciences to the acquisition, interpretation and dissemination of research results to the people of Minnesota. Additionally, its intent is to add to the knowledge base of the United States and globally. Within this framework, major emphasis is placed on research and education that is relevant to the needs of northwest Minnesota, and includes projects initiated by Center scientists, other MAES scientists and state or federal agencies.

Contributors to the On-Farm Trials include: Dr. Angie Peltier, Extension Regional Office, Crookston; Dr. Jared Goplen, Extension Regional Office, Morris; Dr. Daniel Kaiser, Soil, Water, and Climate, University of Minnesota; Arthur Vieira Ribeiro, Robert Koch and Bruce Potter, Extension Integrated Pest Management, University of Minnesota, SWROC; Andrew Lueck, Owner/Research Lead, Next Gen Ag, Renville; Maykon Jr. da Silva and Seth Naeve, Dept. of Agronomy and Plant Genetics, University of Minnesota; Dr. Dean Malvick, Dept. of Plant Pathology, University of Minnesota; . Megan McCaghey, Ph.D., Assistant Professor University of Minnesota Department of Plant Pathology.

These projects were made possible thanks to the hard work of many people. This includes farmers, County and Regional Extension Educators, and specialists who participated in these trials.



Previous On-Farm Cropping Trials booklets can be found at: http://mnwheat.org/council/wheat-research-reports/.

# 2022 Wheat Research Review

Last year, the Minnesota Wheat Research & Promotion Council allocated approximately \$867,000 of the total \$1.8 million in check-off income to wheat research, including the On-Farm Research Network, spring wheat breeding programs in Minnesota and South Dakota, and university production research. This review summarizes funded university research from the 2022 cropping season.

#### Wheat Research Project Funding Process:

Each year in September, the Minnesota Wheat Research & Promotion Council requests wheat research pre- proposals from researchers in Minnesota, North Dakota and South Dakota. Researchers are given an opportunity to meet with a small group of wheat growers to get feedback on project ideas. Pre-proposals are reviewed by the Research Committee of the Minnesota Wheat Council. This Committee listens to presentations from each researcher and then the Committee determines which ones should be asked to submit full proposals.

The proposals are evaluated on the following criteria: 1) Is it a priority for growers? 2) Impact on Profitability?3) Probability of Success? 4) Cost vs. Benefit?

At the end of January, the committee meets once again to review the full proposals and make funding recommendations to the Minnesota Wheat Research & Promotion Council.

In addition to the project reports printed and distributed through this booklet, some of the project researchers deliver oral presentations at the Prairie Grains Conference, Best of the Best Workshops and Small Grains Updates - Wheat, Soybean and Corn. Also, some of the projects are reported in Prairie Grains Magazine. The Minnesota Wheat Research Committee comprises wheat growers, agronomists, unbiased researchers and industry representatives.



Information about the committee and previously funded research can be found online at www. mnwheat.org/council. Click on the Research Committee tab.

#### TABLE OF CONTENTS

#### **On-Farm Cropping Trials for Northwest & West Central Minnesota**

- **4** European corn borer survey
- 6 Farmer-driven Research into Planting Green along the Red
- 9 Managing Volunteer Corn in 2,4-D Tolerant Soybeans — Olmsted and Waseca Counties, MN
- **14** Corn stalk rot survey 2022: Northwest Minnesota
- **15** Evaluating soybean varieties to identify genetic and sources of resistance and escape against white mold
- **18** Continued Evaluation of Conventional Variable Rate Herbicide Tank Mixes on Waterhemp Control
- **20** 2022 Western Minnesota Soybean Crop & Pest Survey

#### Wheat Research Reports - Funded in part by the Minnesota Wheat check-off

- **27** Minnesota Small Grains Pest Survey: *Dr. Anthony Hanson/Dr. Jochum Wiersma*
- **34** 2022 Hard Red Spring Wheat Regional Quality Survey: *Dr Shahidul Islam/Dr Richard Horsley*
- **39** Continued provision of rapid end-use quality characterization services to the University of Minnesota Wheat Breeding Program: *Dr. George Amponsah Annor, Dr. James Anderson*
- **40** A novel high-throughput phenotyping pipeline to deliver more productive and stress resilient Minnesota wheat varieties: *Walid Sadok, Daniel M Monnens, James A Anderson*
- **43** Evaluating the impact of drain spacing and fungicide seed treatment on common root rot and Fusarium crown rot in wheat: *Ashok Chanda, Jochum Wiersma, Jeffrey Strock, Lindsay Pease*
- **46** Accelerated Breeding for Resistance to Fusarium Head Blight: *Karl D. Glover*
- **49** Wheat Multi-Trait Predictions: A Quantitative, Genotype x Environment (GxE) Approach to Supporting Minnesota Wheat Breeding and Farmer Varietal Selections: *Kevin Silverstein*, *Yuan Chai, James Anderson*

- **53** University of Minnesota Wheat Breeding Program: James A. Anderson, Jochum Wiersma
- **55** Breeding winter wheat varieties with FHB resistance and straw strength: *Sunish K. Sehgal, Gazala Ameen, Peter Sexton*
- **59** Bacterial seed inoculation to improve nitrogen uptake and use efficiency in wheat: *Paulo Pagliari and Lindsay Pease*
- **64** Research on Bacterial Leaf Streak of Wheat: *Ruth Dill-Macky*
- 68 Southern Minnesota Small Grains Research and Outreach Project: *Dr. Jochum J. Wiersma*
- **72** 2022 Wheat, Barley, and Oats Variety Performance in Minnesota - Preliminary Report 24: *Dr. Jochum J. Wiersma*
- **92** North Dakota Hard Red Spring Wheat Variety Trial Results for 2022 and Selection Guide: *Clair Keene, Andrew Green, Andrew Friskop, Matt Breiland, Tim Friesen, Zhaohui Liu, Shaobin Zhong, John Rickertsen, Eric Eriksmoen, Bryan Hanson, Glenn Martin, Gautam Pradhan,Mike Ostlie*
- **100** North Dakota barley yields 2022, *Clair Keene*



## European corn borer survey – 2017-2022: Northwest Minnesota

Cooperators: Cooperating producers and crop advisors in Becker, Beltrami, Clay, Kittson, Mahnomen, Marshall, Norman, Pennington, Polk, Red Lake and Roseau Counties.

#### Purpose of Study:

European corn borer (ECB) larvae tunnel into stalks and ear shanks (**Figure 1**). Feeding affects the transfer of water and nutrients within the plant and can directly affect yield by reducing kernel weight and number. ECB feeding can indirectly affect yield when tunnels cause stalk breakage, ear drop, or allow the entry of stalk rot and ear mold fungi.



Figure 1. European corn borer (*Ostrinia nubilalis*). Photo: Clemson University, USDA Cooperative Extension Slide Series, Bugwood.org.

<u>ECB and Bt corn.</u> More than 25 years ago scientists found a way to transfer a gene from a soil-borne bacterium called *Bacillus thuringiensis* (Bt) into the corn genome. Bt corn was approved for commercial use in 1996. Within the corn plant tissues, this gene produces a protein that when ingested by larvae breaks down to a toxin which kills larvae by allowing mid-gut contents to leak into the rest of the body cavity. Additional Bt traits that target different aboveand below-ground insect pests have since been incorporated into some hybrids.

The only way to manage ECB before Bt corn was developed, was to closely monitor ECB moth flights and scout for larvae and egg laying. If ECB populations warrant, foliar insecticide applications can provide control if they are carefully timed as the larvae are only susceptible to insecticides for 10 to 14 days. After that time, 3<sup>rd</sup> instar larvae begin to tunnel into the stalk, ear or ear shank where they are protected from insecticide applications. This timing can be difficult particularly in areas of the state where both a single generation and multiple generation biotypes of ECB exist. Historically, the single generation (univoltine strain) has predominated in NW Minnesota.

Even the best-timed insecticide application is less effective than growing a hybrid with the Bt trait. Depending on the hybrid and trait package Bt corn can cost up to \$20/acre more than conventional seed. In the current economic environment, \$20/acre is a big deal and is a major driver of non-Bt corn hybrid seed purchases. During the past 4 years in MN, Bt corn use for above-ground traits for stalk and ear pests has ranged from 85-88% (USDA average).

For Additional Information: Angie Peltier, Anthony Hanson, Ryan Miller, Bruce Potter, Dean Malvick & Bill Hutchison High adoption of Bt corn has also occurred in NW MN. This has resulted in area-wide suppression of ECB populations, protecting even the non-Bt acres.

<u>Study Objectives</u>. Some objectives of the MN Corn Research & Promotion Council-sponsored 2017-2022 fall ECB survey in NW MN are to answer the following questions:

1) Are there changes in ECB population densities over time?

2) To what extent does the areawide suppression effect occur in the NW?

3) Have any population shifts taken place? ie. is the Bt trait still effective (Bt-resistant corn borer have been found in eastern Canada but fortunately they are a different strain than occurs in MN).

#### **Results:**

During 2017, 2018, 2019, 2020, 2021 and 2022 a total of 13, 30, 55, 28, 43 and 38 commercial fields were surveyed in NW MN, respectively (Table 1). Among the randomly surveyed fields there were also 3 known non-Bt fields in 2017, 21 in 2018, 36 in 2019, 8 in 2020, 29 in 2021 and 18 in 2022. The data presented in Table 1 summarize the per plant average number of ECB larvae in surveyed fields by year and Bt status. In 1995, before the 1996 release of ECB Bt hybrids, an average of 1.16 ECB larvae per plant were found in NW MN corn plants. In 2017 through 2019, randomly surveyed corn fields (likely a mix of Bt and non-Bt fields) had an average of 0 to 0.020 larvae per plant, while the average number of larvae per plant in non-Bt corn fields ranged from 0.0190 to 0.1472 larvae per plant. When compared to randomly surveyed fields, in 2017 there were more than 3.3 times the number of larvae per plant in the non-Bt fields; similarly, when compared to randomly surveyed fields, in 2019 there were more than 14 times the number of larvae per plant in the non-Bt fields.

ECB population densities were very low in all surveyed fields in 2020 through 2022. This may indicate that, even though overall ECB populations are low, they still follow the historical cycle entomologists believe is related to a fungal disease and other parasites causing dramatic declines in high ECB populations every 6-7 years. An additional factor that might have impacted population densities of larvae within plants, is the historic extreme drought conditions that prevailed in NW MN in 2021, as mortality of both eggs and early larval instars has been associated with uninterrupted periods of hot, dry weather. Another key factor is likely the high Bt use rates in NW MN. 

 Table 1. NW MN crop reporting district data for ECB larvae

 and percentage of fields infested in field corn, Minnesota

 2017-22. Baseline data for 1995, prior to Bt corn

 commercialization is also shown (non-Bt fields)\*

|      | Mean #ECB larvae/plant<br>(n) |                              | Fields Infested<br>(%)             |
|------|-------------------------------|------------------------------|------------------------------------|
| Year | Random<br>fields              | Known non-<br>Bt fields only | All fields<br>(Only non-Bt fields) |
| 1995 | 1.16*                         | 1.16*                        | . (.)                              |
| 2017 | 0.0200 (10)                   | 0.0667 (3)                   | 15.4 (33.3)                        |
| 2018 | 0.0000 (9)                    | 0.0190 (21)                  | 10.0 (14.3)                        |
| 2019 | 0.0105 (19)                   | 0.1472 (36)                  | 25.5 (33.3)                        |
| 2020 | 0.0000 (20)                   | 0.0000 (8)                   | 0.0 (0.0)                          |
| 2021 | 0.0000 (14)                   | 0.0344 (29)                  | 9.3 (13.8)                         |
| 2022 | 0.0000 (20)                   | 0.0000 (18)                  | 0.0 (0.0)                          |

It is interesting to note that among the non-Bt fields sampled in 2020-2022, only 0.0 to 9.3 percent were infested with one or more larvae. This trend continues to indicate that the "halo effect" of Bt corn protection is still active in protecting non-Bt fields from ECB (Hutchison, unpublished data). Briefly, the halo effect is attributed to ECB moth dispersal and behavior, where the number of moths dispersing out of non-Bt fields each spring/summer is greater than moths immigrating back to non-Bt fields. Thus, fewer eggs are laid in non-Bt corn. Because ECB moths cannot distinguish between Bt and non-Bt fields, the majority of eggs will be laid in Bt fields (via current high Bt use), and virtually all larvae emerging in Bt fields will die (assuming ECB remains susceptible to Bt). While higher than the number of larvae per plant in fields surveyed at random, the average number of larvae per plant in non-Bt fields is much lower than the traditional economic threshold levels for ECB (typically estimated at 0.5 larvae/plant).

#### Bottom line.

While this information provides a '30,000 ft view' of ECB in the region, remember that these are region-wide averages and do not replace scouting of individual fields for making informed, in-season pest management decisions. One positive for those planting non-Bt corn in NW MN, the larvae collected in this region reflect the single-generation type of ECB, meaning that scouting and insecticide management can be confined to a shorter time each year.

Each farmer has a different tolerance for risk. While low populations mean that there is less risk associated with planting corn hybrids without Bt for ECB protection, the risk is not zero, and varies from year to year.

#### Want to learn more?

For additional information about the European corn borer and ECB management, visit:

https://extension.umn.edu/corn-pest-management/ european-corn-borer-minnesota-field-corn

For Additional Information: Angie Peltier, Anthony Hanson, Ryan Miller, Bruce Potter, Dean Malvick and Bill Hutchison Project Funding Provided by: Minnesota Corn Research and Promotion Council



## Farmer-driven Research into Planting Green along the Red

**Farm fields near Town, County:** Gentilly, Polk; Browns Valley, Traverse; Tintah, Traverse; Barrett, Grant; Appleton, Swift.

**Experimental Design:** Treatments arranged as large strips wide enough to accommodate farmer's equipment in a randomized complete block design with three replications. While nutrient cycling & soil health data were also collected, here are reported rye biomass at termination, soybean stand count, yield, moisture & test weight data.

**Treatments:** 1) Current tillage practice without a fall-seeded cereal rye cover crop (CC), 2) CC terminated (term.) with glyphosate 1-2 weeks before soybean planting, 3) CC term. at planting, or CC term. 1-2 weeks after soybean planting.

#### **Purpose of Study:**

Minnesota (MN) farmers face difficult choices when deciding to prioritize either long-term soil health goals or the immediate benefits of tillage for residue management and seedbed preparation. Despite the reported soil health benefits of cover crops, a short growing season makes delays to spring field work risky. Research on cover cropping suggests that early season cover crops can stabilize yields by mitigating excess and limited soil moisture, improving field trafficability, and reducing wind erosion. Reliable advice on agronomic outcomes of cover cropping is critically needed by MN farmers interested in adopting reduced-tillage and cover cropping systems. To meet this need, we partnered with MN farmers to design 5 replicated, productionscale research and demonstration trials that were sown to cereal rye in Fall 2021 (Fig. 1, Table 1). Soybeans were seeded in spring 2022 and cover crops terminated before, at or after soybean planting



#### **Results:**

**Table 1.** Dates that the 2021 winter rye cover and 2022soybean crop were seeded and soybean seeding rate in fiveMinnesota farm fields

| Town          | Rye seed-<br>ed ('21) | Soybean<br>seeded ('22) | Soybean seeding<br>rate (per acre) |
|---------------|-----------------------|-------------------------|------------------------------------|
| Appleton      | Oct 30-31             | May 10                  | 140,000                            |
| Browns Valley | Oct 31                | May 23                  | 165,000                            |
| Tintah        | Sep 8                 | Jun 8                   | 140,000                            |
| Barrett       | Oct 31                | May 27                  | 165,000                            |
| Gentilly      | Sep 7                 | Jun 7                   | 175,000                            |

Each trial location grew different soybean varieties and had a different soybean seeding dates and rates and therefore different dates of rye termination and so results are presented by location.

- **Browns Valley.** Aerial seeding of rye into a standing silage corn crop in the fall of 2021 allowed some seed to drift into the norye plots (**Table 2**). The before-planting and no-rye plots had similar biomass, the at-planting treatment accumulated 245 lb/A more biomass and after-planting still an additional 125 lb/A biomass.
- There was a numerical trend with the lower rye biomass the greater the soybean stand count, with the after-planting rye termination averaging 21,511 fewer plants/A than the other treatments.
- Soybean yields were similar for all but the lower yielding afterplanting rye termination timing. Soybean moisture and test weights were similar among treatments.
- Tintah. Termination timing had a significant effect on rye biomass, with greater biomass with each successive timing (Table 3). The no-rye and before-planting termination timing treatments had significantly higher soybean stand counts than the plots in which rye was terminated at or after soybean planting.
- The yields in the no-rye or before-planting termination timing plots were similar and greater than when rye was terminated at planting. Yield was lowest when rye termination took place after soybean planting. Oddly, soybean test weights were.....

**For additional information, contact:** Angie Peltier (apeltier@umn.edu) & Jodi DeJong-Hughes (dejon003@umn.edu), UMN Extension; Anna Cates, Lindsay Pease, Peyton Loss & Kat LaBine, UMN Dept. of Soil Water & Climate; Melissa Carlson & Chris Matter, MN Wheat Research & Promotion Council; Dorian Gatchell, MN Ag Services.

Project funding provided by: Minnesota Soybean Research & Promotion Council Minnesota Wheat Research & Promotion Council.

- ..... significantly lower in plots with no rye or when rye was terminated before planting than when rye was terminated at planting.
- **Table 2.** The effect of rye termination timing on ryebiomass, soybean stand count, yield, moisture and testweight at the farm near Browns Valley, MN

| Rye termination timing | Rye<br>biomass<br>(lb/A) | Soybean<br>stand<br>count<br>(plants/A) | Yield<br>(bu/A) | Moisture<br>(%) | Test<br>weight<br>(lb/bu) |
|------------------------|--------------------------|-----------------------------------------|-----------------|-----------------|---------------------------|
| Before planting        | 116 a                    | 104,221 b                               | 41.7 b          | 11.6            | 57.7                      |
| At planting            | 351 b                    | 103,576 b                               | 41.2 b          | 11.6            | 57.7                      |
| After planting         | 476 c                    | 83,248 a                                | 34.5 a          | 11.6            | 47.3                      |
| No rye                 | 97 a                     | 106,480 b                               | 39.4 b          | 11.7            | 57.20                     |
| LSD (90% CL)           | 53                       | 10,492                                  | 2.61            | NS              | NS                        |
| CV (%)                 | 16.15                    | 6.65                                    | 4.19            | 0.81            | 15.76                     |

| Table 3. The effect of rye termination timing on rye   |
|--------------------------------------------------------|
| biomass, soybean stand count, yield, moisture and test |
| weight at the farm near Tintah, MN                     |

| Rye termination timing | Rye<br>biomass<br>(lb/A) | Soybean<br>stand<br>count<br>(plants/A) | Yield<br>(bu/A) | Moisture<br>(%) | Test<br>weight<br>(lb/bu) |
|------------------------|--------------------------|-----------------------------------------|-----------------|-----------------|---------------------------|
| Before planting        | 154 a                    | 111,320 b                               | 44.4 c          | 10.8            | 58.4 a                    |
| At planting            | 383 b                    | 95,040 a                                | 40.0 b          | 10.7            | 59.3 b                    |
| After planting         | 515 c                    | 87,560 a                                | 36.5 a          | 10.9            | 59.0 ab                   |
| No rye                 |                          | 109,120 b                               | 45.6 c          | 10.8            | 58.3 a                    |
| LSD (90% CL)           | 71                       | 11,257                                  | 1.60            | NS              | 0.71                      |
| CV (%)                 | 13.18                    | 7.04                                    | 2.42            | 0.99            | 0.70                      |

- **Barrett.** Rye biomass was significantly lower when terminated before soybean, than when terminated either at or after soybean planting (**Table 4**). Soybean stand did not differ among treatments.
- Soybean yield was statistically similar regardless of rye termination timing, and lower than when grown without the rye cover crop. Soybean moisture was lowest in plots in which rye was terminated after soybean planting and highest in plots without rye or when rye was terminated before soybean planting.
- **Gentilly.** The exceptional drought and early wheat harvest in 2021 allowed for timely rye seeding and the abnormally wet 2022 spring led to delayed soybean planting at the northernmost location (the farm near Gentilly) allowing considerable rye growth.
- Each successive rye termination timing allowed for

- significantly more biomass to accumulate when compared to the previous timing (**Table 5**). Rye biomass was perhaps responsible for the lower soybean stand count, the greater the biomass accummulation, and significantly lower stands in the plots in which rye was terminated at or after soybean planting.
- Surprisingly, soybean yields were statistically similar and greater in the plots with no-rye, at-planting and afterplanting rye termination treatments than in the plots in which rye was terminated before planting. Soybean moisture content was significantly similar and higher in the rye plots than in the no-rye plots. Soybean test weight was significantly higher in the plots in which rye was terminated after-planting than at-planting.
- **Table 4.** The effect of rye termination timing on rye biomass, soybean stand count, yield, moisture and test weight at a farm near Barrett, MN

| Rye termination timing | Rye<br>biomass<br>(lb/A) | Soybean<br>stand<br>count<br>(plants/A) | Yield<br>(bu/A) | Moisture<br>(%) | Test<br>weight<br>(lb/bu) |
|------------------------|--------------------------|-----------------------------------------|-----------------|-----------------|---------------------------|
| Before planting        | 126 a                    | 130,357                                 | 45.9 a          | 10.8 b          | 57.3                      |
| At planting            | 250 b                    | 128,421                                 | 46.9 a          | 10.7 ab         | 57.2                      |
| After planting         | 299 b                    | 139,392                                 | 45.3 a          | 10.6 a          | 56.7                      |
| No rye                 |                          | 147,781                                 | 54.9 b          | 10.8 b          | 56.8                      |
| LSD (90% CL)           | 66                       | NS                                      | 3.1             | 0.2             | NS                        |
| CV (%)                 | 17.71                    | 9.35                                    | 4.5             | 1.27            | 0.64                      |

**Table 5.** The effect of rye termination timing on rye biomass, soybean stand count, yield, moisture and test weight at a farm near Gentilly, MN

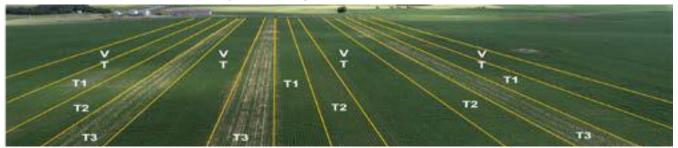
|                        | 1                        |                                         |                 | 1               | 1                         |
|------------------------|--------------------------|-----------------------------------------|-----------------|-----------------|---------------------------|
| Rye termination timing | Rye<br>biomass<br>(lb/A) | Soybean<br>stand<br>count<br>(plants/A) | Yield<br>(bu/A) | Moisture<br>(%) | Test<br>weight<br>(lb/bu) |
| Before planting        | 231 a                    | 196,698 ab                              | 35.7 a          | 12.2 b          | 60.7 ab                   |
| At planting            | 387 b                    | 175,015 a                               | 41.4 b          | 12.5 b          | 60.2 a                    |
| After planting         | 501 c                    | 168,045 a                               | 40.9 b          | 12.5 b          | 60.9 b                    |
| No rye                 |                          | 215,283 b                               | 44.2 b          | 11.5 a          | 60.8 ab                   |
| LSD (90% CL)           | 107                      | 29,186                                  | 4.9             | 0.6             | 0.7                       |
| CV (%)                 | 38.74                    | 9.75                                    | 7.63            | 2.85            | 0.77                      |

**Appleton.** The first rye termination at the near Appleton took place at soybean planting. A significant additional 105 lb/A of rye biomass were added in the 13 days between soybean planting and the after-planting termination timing (**Table 6**). A numerical trend was ....

**For additional information, contact:** Angie Peltier (apeltier@umn.edu) & Jodi DeJong-Hughes (dejon003@umn.edu), UMN Extension; Anna Cates, Lindsay Pease, Peyton Loss & Kat LaBine, UMN Dept. of Soil Water & Climate; Melissa Carlson & Chris Matter, MN Wheat Research & Promotion Council; Dorian Gatchell, MN Ag Services.



....observed in that the greater the greater the cover crop biomass, the lower the soybean stand count. But this slight trend did not result in any statistical differences among treatments for soybean yield, moisture and test weight.


 Table 5.
 The effect of rye termination timing on rye

 biomass, soybean stand count, yield, moisture and test
 weight at a farm near Appleton, MN

| Rye termination timing | Rye<br>biomass<br>(lb/A) | Soybean<br>stand<br>count<br>(plants/A) | Yield<br>(bu/A) | Moisture<br>(%) | Test<br>weight<br>(lb/bu) |  |  |  |  |
|------------------------|--------------------------|-----------------------------------------|-----------------|-----------------|---------------------------|--|--|--|--|
| Before planting        | Tr                       | Treatment not included at this location |                 |                 |                           |  |  |  |  |
| At planting            | 55 a                     | 115,837                                 | 39.9            | 10.9            | 56.2                      |  |  |  |  |
| After planting         | 160 b                    | 114,869                                 | 36.8            | 10.5            | 56.9                      |  |  |  |  |
| No rye                 |                          | 116,483                                 | 46.4            | 10.0            | 55.9                      |  |  |  |  |
| LSD (90% CL)           |                          | NS                                      | NS              | NS              | NS                        |  |  |  |  |
| CV (%)                 | 30.86                    | 1.70                                    | 10.64           | 8.13            | 1.74                      |  |  |  |  |

- **Summary.** This document summarizes crops grown in farmer cooperators' fields in two abnormal growing seasons. The rye cover crop was seeded after an abnormally early harvest of the 2021 wheat crop (Gentilly) due to exceptional drought conditions or into standing corn crops (Barrett, Browns Valley, Tintah, Appleton) and then in spring 2022, soybean was seeded a month (or greater) later than normal due to very wet soil conditions. Only time will reveal how 'typical' the results of this 2021-22 study were.
- <u>Rye biomass & soybean stand count.</u> Delaying cover crop termination until 1-2 weeks after soybean planting produced more cover crop biomass; at four of the five trial locations, there was significantly more biomass with this delayed termination. However, at most of the locations, planting soybean into a living cover crop that was then terminated either immediately after planting or

- numerically lower soybean stand counts when compared to soybeans grown in plots in which the rye was
- terminated before planting or in plots without rye (**Figure 1**).
- Soybean yield, moisture & test weight. At one location, there were no differences in yield among cover crops treatments; at another, all of the treatment yields were similar with the surprising exception of lower yield in plots terminated before soybean planting. At two locations, regardless of termination timing rye plots yielded significantly less than the no-rye plots. In another location, yield in the no-rye plots was statistically similar to yield in rye plots terminated before soybean planting, with each later termination timing yielding significantly less than plots of earlier termination timing.
- Soybean moisture and test weight were not affected by cover crops treatments at 3 of the trial locations. At one location soybean moisture was higher when a cover crop was grown than when not; at another, soybean moisture was lower in rye plots that were terminated after planting than in the no rye or other rye termination timings. At one location test weight was higher and at another lower when rye was terminated at planting.
- Stay tuned. Watch for news about this project as additional tests are currently being run and data analyzed. Look for more research results on the effects of different combinations of cover crop seeding rate, tillage strategies and cover crop termination timing on nutrient cycling, soil health metrics, iron deficiency chlorosis and weed management at the UMN Research & Outreach Centers (ROC) in Crookston and Morris, MN.
- In fall 2022, rye was seeded at 3 on-farm locations surrounding each of the two ROCs in anticipation of planting soybean "green" for further study in 2023. This project will run both on ROCs and on cooperators' farms through 2025.



**Figure 1.** One can see the effects of cover crop termination timing on soybean stand at the Barrett field location. Plot edges are delineated by lines and the before, at and after soybean seeding are labeled T1, T2 and T3, respectively. Vertical tillage plots without a cover crop are labeled VT. (Photo: Dorian Gatchell & Jodi DeJong-Hughes)

**For additional information, contact:** Angie Peltier (apeltier@umn.edu) & Jodi DeJong-Hughes (dejon003@umn.edu), UMN Extension; Anna Cates, Lindsay Pease, Peyton Loss & Kat LaBine, UMN Dept. of Soil Water & Climate; Melissa Carlson & Chris Matter, MN Wheat Research & Promotion Council; Dorian Gatchell, MN Ag Services.

# Managing Volunteer Corn in 2,4-D Tolerant Soybeans — Olmsted and Waseca Counties, MN

Cooperator: University of Minnesota Extension

Nearest Town:Waseca and RochesterSoil Type:Clay loam and loamTillage:ConventionalPrevious Crop:CornPlanting Date:Waseca:Waseca:05/28/2022Rochester:06/02/2022Rochester:POST I07/01/2022POST II:07/09/2022Variety:Stine19EC12Row Width:30 inchHarvest Population:150,000Experimental Design:Randomized complete block with 4 replications

For Additional Information: Ryan Miller, mill0869@umn.edu

Project Funding Provided by: Minnesota Soybean and Research and Promotion Council

#### Purpose of Study:

Soybean varieties tolerant to 2,4-D-choline, glyphosate, and glufosinate have been widely adopted by Minnesota soybean growers. While 2,4-D tolerant soybeans provide growers with another site of action to manage glyphosate-resistant weed populations, there has also been difficulty in achieving adequate control of volunteer corn in this system. ACCase-inhibiting herbicides are often the primary tool for managing volunteer corn and the ACCase-inhibiting herbicides when tank mixed with auxinic herbicides showed antagonism and resulted in reduced control of grassy weeds. Growers relying on previously effective herbicide rates and application strategies are often surprised when they do not achieve adequate volunteer corn control. The objective of this research was to evaluate the interaction between ACCase-inhibiting herbicides (clethodim and quizalofop-ethyl) and 2,4-D choline alone or tank-mixed with glyphosate or S-metolachlor for glyphosate-resistant volunteer corn control in 2,4-D tolerant soybean.

#### **Results:**

Generally, lower rates of either volunteer corn controlling graminicide resulted in reduced volunteer corn control, although reduced control was more pronounced with quizalofop-ethyl (Assure II) treatments. Higher graminicide rates helped overcome the antagonism between ACCase-inhibiting herbicides and 2,4-D choline and could be a useful strategy for managing volunteer corn. Sequential applications of quizalofop-ethyl (Assure II) provided better control of volunteer corn. Glyphosate did not appear to cause any antagonism.

Continued on next page 🔶

Preliminary Data 11/17/2022, final report will be available by 11/30/2022

### TREATMENTS

#### PREEMERGENCE

•All treatments have a preemergence Dual II Magnum

#### •POSTEMERGENCE

1.UNTREATED

2.Enlist + Glyphosate + Select Max 6 oz + (AMS & NIS) 3.Enlist + Glyphosate + Select Max 6 oz + Dual + (AMS & NIS) 4.Enlist + Glyphosate + Select Max 9 oz + (AMS & NIS) 5.Enlist + Glyphosate + Select Max 9 oz + Dual + (AMS & NIS) 6.Enlist + Select Max 6 oz + (AMS & COC) 7.Enlist + Select Max 6 oz + Dual + (AMS & COC) 8.Enlist + Select Max 9 oz + (AMS & COC) 9.Enlist + Select Max 9 oz + Dual + (AMS & COC) 10.Enlist + Glyphosate + Assure II 4 oz + (AMS & COC) 11.Enlist + Glyphosate + Assure II 4 oz + Dual + (AMS & COC) 12.Enlist + Glyphosate + Assure II 12 oz + (AMS & COC) 13.Enlist + Glyphosate + Assure II 12 oz + Dual + (AMS & COC) 14.Enlist + Assure II 4 oz + (AMS & COC) 15.Enlist + Assure II 4 oz + Dual + (AMS & COC) 16.Enlist + Assure II 12 oz + (AMS & COC) 17.Enlist + Assure II 12 oz + Dual + (AMS & COC) 18.Enlist + Glyphosate+ (AMS) fb1 Select Max 6 oz + (COC & AMS) 19.Enlist + Glyphosate + (AMS) fb Assure II 4 oz + (COC & AMS) 20.WEED FREE \*1= graminicide in a sequential treatment 5-7 days after initial POST treatment COC = SuperbHCRNIS = Preference®

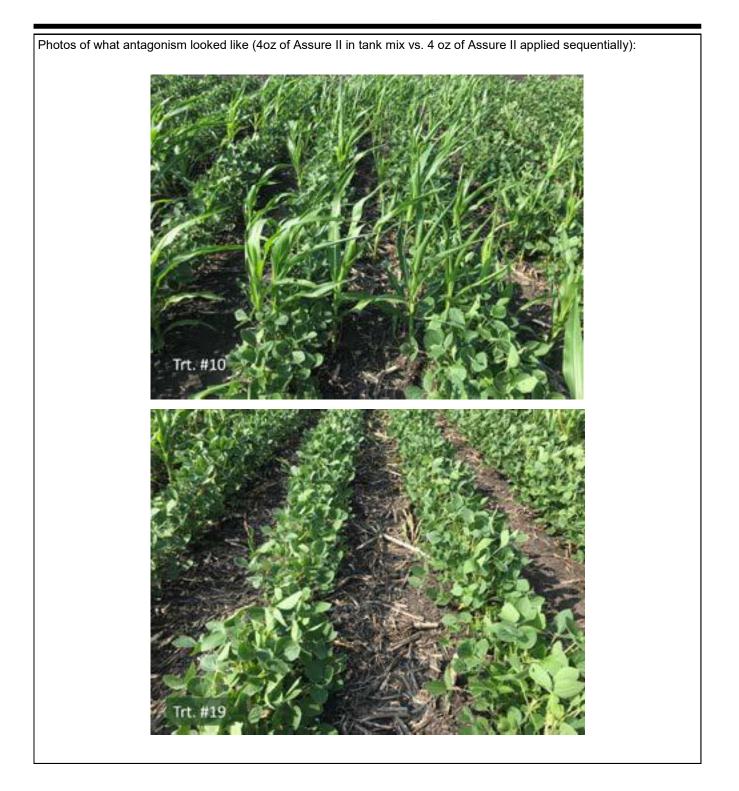
For Additional Information: Ryan Miller, mill0869@umn.edu Preliminary Data 11/17/2022, final report will be available by 11/30/2022

Rochester Data August 5th rating date, Percent Volunteer Corn Control

|     | t Name<br>ing Date |                 |              | Aug-5-2022 |     | t Name<br>ing Date |            |      | volunteer corr |
|-----|--------------------|-----------------|--------------|------------|-----|--------------------|------------|------|----------------|
|     | Treatment          | Rote            | 1 col        | Aug-0-2022 |     |                    | Date       | Anni | Aug-5-2022     |
|     | Name               | Rate Unit       | Appl<br>Code | 12.        |     | Treatment          |            | Appl | 12*            |
| 40. | UNTREATED          |                 | CCOR         | 0.0e       | 12  | Name<br>Enlist One | Rate Unit  |      | 94.5a          |
| -   |                    |                 |              | 90.8ab     | 12  |                    | 2pt/a      | A    | 94.58          |
| 2   | Enlist One         | 2pt/a           | A            | An sap     | L . | PowerMax 3         |            |      |                |
|     | PowerMax 3         | 301 oz/a        |              |            | L . | Assure II          | 12fl oz/s  |      |                |
|     | Select Max         | 61 oz/a         |              | I I        |     | Amsol              |            | A    |                |
|     | Ansol              | 3qt/a           | A            | I I        |     | COC                | 1qt/a      | A    |                |
|     | NIS                | 0.25% v/v       | _            |            | 13  | Enlist One         |            | A    | 97.0a          |
| 3   | Enlist One         | 2pt/a           | A            | 83.00      |     | PowerMax 3         |            |      |                |
|     | PowerMax 3         | 30f oz/a        |              |            |     | Assure II          | 12fl oz/c  | A a  |                |
|     | Select Max         | 61 oz/s         | A            |            |     | Dual               | 1pt/a      | A    |                |
|     | Dual               | 1pt/a           | A            |            |     | Magrum             | ipva       | ^    |                |
|     | Magnum             | 1940            | ^            |            |     | Amsol              | 3qt/a      | A    |                |
|     | Ansol              | 3qt/a           | A            |            | L . | COC                | 1qt/a      | A    |                |
|     | NIS                | 0.25% v/v       | A            |            | 14  | Enlist One         | 2pt/a      | A    | 10.0d          |
| 4   | Enlist One         | 2pt/a           | A            | 93.5a      | E.  | Assure II          | 4fl oz/    | A    |                |
|     | PowerMax 3         | 301 oz/a        |              |            |     | Amsol              |            | A    |                |
|     | Select Max         | 91 oz/a         |              |            | 1   | COC                | 1qt/a      | Â    |                |
|     | Ansol              | 3qt/a           | A            |            | 15  | Enlist One         | 2pt/a      | A    | 6.3de          |
|     | NIS                | 0.25% v/v       |              | I I        | ° * | Assure II          | 4fl oz/    |      | 0.500          |
| 5   | Enlist Ore         | 2pt/a           | A            | 93.0a      | L . | Dual               | 48 0.07    | 10   |                |
| ٢   | PowerMax 3         | 301 oz/a        |              | 93.0a      | L . |                    | 1pt/a      | A    |                |
| I 1 | Select Max         | 91 oz/a         |              |            | L . | Magrum             |            |      |                |
|     |                    | 94 02/0         | 1.1          | I I        | L . | Amsol              | 3qt/a      | A    |                |
| I 1 | Dual               | 1pt/a           | A            | I I        |     | COC                | 1qt/a      | A    |                |
| I 1 | Magnum             |                 |              |            | 16  | Enlist One         | 2pt/a      | A    | 95.3a          |
| L 1 | Ansol              | 3qt/a           | A            | I I        | L . | Assure II          | 12fl oz/   | s A  |                |
|     | NIS                | 0.25% v/v       | _            |            | L . | Amsol              | 3qt/a      | A    |                |
| β   | Enlist One         | 2pt/a           | A            | 92.3a      | L   | COC                | 1qt/a      | A    |                |
| L 1 | Select Max         | 61 oz/a         | A            |            | 17  | Enlist One         | 2pt/a      | A    | 97.0a          |
|     | Ansol              | 3qt/a           | A            | I I        | L . | Assure II          | 12fl oz/   | A A  |                |
|     | COC                | 1qt/a           | A            |            | L . | Dual               | direction. |      |                |
| 7   | Enlist One         | 2p6/a           | A            | 91.8ab     | L . | Magrum             | 1pt/a      | A    |                |
|     | Select Max         | 61 oz/s         | A            |            |     | Amsol              | 3qt/a      | A    |                |
| I 1 | Dual               |                 |              |            |     | COC                | 1qt/a      | A    |                |
| I 1 | Magnum             | 1pt/a           | A            |            | 18  | Enlist One         | 2pt/a      | A    | 95.0a          |
|     | Amsol              | 3qt/a           | A            |            | Ľ   | PowerMax 3         |            |      | 00.00          |
|     | COC                | 1qt/a           | A            | I I        |     | Amsol              | 2.5% v/v   |      |                |
| R   | Enlist One         | 2pt/a           | A            | 97.5a      |     | Select Max         | 6fl oz/    |      |                |
| Ľ., | Select Max         | 91 oz/a         |              |            |     | Arrisol            | 3qt/a      | в    |                |
|     | Ansol              | 3qt/a           | A            |            |     |                    |            | B    |                |
|     | COC                | 1gt/a           | Â            |            | 10  | COC                | 1gt/a      |      | 98.0a          |
| 6   | Enlist One         | 2pt/a           | Å            | 96.3a      | P*. | Enlist One         | 2pt/a      | A    | 99.00          |
| ľ   | Select Max         | 2pva<br>91 oz/a |              | 90.94      |     | PowerMax 3         |            |      |                |
|     | Dual Dual          | 54 G2/8         | A            | I I        |     | Amsol              | 2.5% v/v   |      |                |
|     |                    | 1pt/a           | A            |            |     | Assure II          | 4fl oz/s   |      |                |
|     | Magnum             | Really.         |              |            |     | Amsol              | 3qt/a      | 8    |                |
|     | Ansol              | 3qt/a           | A            | I I        |     | COC                | 1qt/a      | 8    |                |
| _   | COC                | 1qt/a           | A            |            | 20  | WEED FREE          | E          |      | 99.0a          |
| 10  | Enlist One         | 2p6/a           | A            | 31.3c      |     |                    |            |      |                |
|     | PowerMax 3         | 301 oz/a        |              |            |     |                    |            |      |                |
|     | Assure II          | 41 oz/a         |              |            |     |                    |            |      |                |
|     | Amsol              | 3qt/a           | A            |            |     |                    |            |      |                |
|     | COC                | 1qt/a           | A            |            |     |                    |            |      |                |
| 11  | Enlist One         | 2pt/a           | A            | 15.0d      |     |                    |            |      |                |
|     | PowerMax 3         | 301 oz/e        | A            |            |     |                    |            |      |                |
|     | Assure II          | 41 oz/e         | A            |            |     |                    |            |      |                |
|     | Dual               | 4-41-           |              |            |     |                    |            |      |                |
|     | Magnum             | 1pt/a           | A            |            |     |                    |            |      |                |
|     | Ansol              | 3qt/a           | A            |            |     |                    |            |      |                |
|     | COC                | 1qt/a           | A            |            |     |                    |            |      |                |
|     |                    |                 |              |            |     |                    |            |      |                |

For Additional Information: *Ryan Miller, mill*0869@*umn.edu* 

Continued on next page


Preliminary Data 11/17/2022, final report will be available by 11/30/2022

Waseca Data August 3rd rating date, Percent Volunteer Corn Control

|     | st Name<br>Ing Date |                    |       | Aug-3-202 |
|-----|---------------------|--------------------|-------|-----------|
|     | Treatment           | Rate               | Accil | 10*       |
|     | Name                | Rate Unit          |       |           |
|     | UNTREATED           | )                  | 0001  | 0.01      |
| 5   | Enlist One          | 2pt/a              | A     | 91.0cd    |
| -   | PowerMax 3          | 30fl oz/a          |       | 01.000    |
|     | Select Max          | 6fl oz/a           |       |           |
|     | Amsci               | 3ct/a              |       |           |
|     | NIS                 |                    |       |           |
| 5   | Enlist One          | 0.25% w/v          |       | 83.8e     |
| 2   | PowerMax 3          | 2pt/a<br>30fl oz/a |       | 00.00     |
|     |                     |                    |       |           |
|     | Select Max          | 6fl oz/a           | ^     |           |
|     | Dual                | 1pt/a              | A     |           |
|     | Magnum              |                    |       |           |
|     | Amsol               | 3ct/a              |       |           |
| _   | NIS                 | 0.25% w/v          | _     |           |
| ÷   | Enlist One          | 2pt/a              | A .   | 99.0a     |
|     | PowerMax 3          | 30fl oz/a          |       |           |
|     | Select Max          | 9fl oz/a           |       |           |
|     | Amsol               |                    | A     |           |
| _   | NIS                 | 0.25% w/v          |       |           |
| s., | Enlist One          | 2pt/a              |       | 97.0ab    |
|     | PowerMax 3          | 30fl oz/a          |       |           |
|     | Select Max          | 9fl oz/a           | A     |           |
|     | Dual                | 1pt/a              |       |           |
|     | Nagnum              | rpo a              | ^     |           |
|     | Amsol               | 3ct/a              | A     |           |
|     | NIS                 | 0.25% w/v          | A     |           |
| 5   | Enlist One          | 2pt/a              | A     | 92.5b4    |
|     | Select Max          | 6fl oz/a           | A     |           |
|     | Amsol               | 3ct/a              | A     |           |
|     | COC                 | 1ct/a              | A     |           |
| 7   | Enlist One          | 2pt/a              | A     | 92.3b4    |
|     | Select Max          | Gfl oz/a           | A     |           |
|     | Dual                |                    |       |           |
|     | Nagrum              | 1pt/a              | ^     |           |
|     | Amsol               | 3ct/a              | A     |           |
|     | COC                 | 1ct/a              |       |           |
| 3   | Enlist One          |                    | A     | 99.0a     |
|     | Select Max          | 9fl oz/a           | A     |           |
|     | Amsci               | 3ct/a              |       |           |
|     | COC                 | 1ct/a              | A     |           |
| 9   | Enlist One          | 2pt/a              | Å     | 98.0a     |
|     | Select Max          | 9fl oz/a           |       |           |
|     | Dual                |                    |       |           |
|     | Magnum              | 1pt/a              | Α.    |           |
|     | Amsci               | 3ct/a              | 4     |           |
|     | COC                 | 1 ct/a             | Â     |           |
| 10  | Enlist One          | 200/8              | Å     | 11.3g     |
| 1.0 | PowerMax 3          |                    |       | 11.49     |
|     | Assure II           | 4fl oz/a           |       |           |
|     | Amsol               | 3ct/a              |       |           |
|     | COC                 |                    | 2     |           |
| 11  | Enlist One          | 1ct/a<br>2pt/a     | A .   | 13.8g     |
| 1   | PowerMax 3          | 30fl oz/a          |       | 10.09     |
|     | Assure II           | 4fl oz/a           |       |           |
|     |                     | 411 02/8           | ~     |           |
|     | Dual                | 1pt/a              | A     |           |
|     | Nagnum              |                    |       |           |
|     | Amsci               | 3ct/a              | A .   |           |
|     | COC                 | 1-ct/a             | A     |           |

| Pest Name           |           |      | l v        |
|---------------------|-----------|------|------------|
| Rating Date         |           |      | Aug-3-2022 |
| Int Treatment       | Rate      | Appl | 10*        |
| No. Name            | Rate Unit |      |            |
| 12 Enlist One       | 2ptia     | A    | 91.0cde    |
| PowerMax 3          | 301 oz/a  | вA   |            |
| Assure II           | 121 oz/a  | A    |            |
| Amsol               | 3qt/a     | A    |            |
| COC                 | 1qt/a     | A    |            |
| 13 Enlist One       | 2pta      | A    | 95.3abc    |
| PowerMax 3          | 30f oz/a  | A    |            |
| Assure II           | 121 ozk   | a A  |            |
| Dual                | tetle     | A    |            |
| Magnum              | 1pta      | ~    |            |
| Amsol               | 3qt/a     | A    |            |
| COC                 | 1qtia     | A    |            |
| 14 Enlist One       | 2pt/a     | A    | 6.3h       |
| Assure II           | 4fl oz/a  | A a  |            |
| Amsol               | 3qtia     | A    |            |
| COC                 | 1qt/a     | A    |            |
| 15 Enlist One       | 2pta      | A    | 3.8h       |
| Assure II           | 4fl oz/a  | A #  |            |
| Dual                | 1ptia     |      |            |
| Magnum              |           |      |            |
| Amsol               | 3qtia     | A    |            |
| COC                 | 1qt/a     | A    |            |
| 16 Enlist One       | 2pt/a     | A    | 61.3f      |
| Assure II           | 121 oz/a  |      |            |
| Amsol               | 3qt/a     |      |            |
| COC                 | 1qt/a     |      |            |
| 17 Enlist One       | 2pt/a     |      | \$8.7e     |
| Assure II           | 121 oz/   | sА   |            |
| Dual                | 1pt/a     | A    |            |
| Magnum              |           |      |            |
| Amsol               | 3qtia     |      |            |
| COC                 | 1gtia     | A    |            |
| 18 Enlist One       | 2pt/a     | A    | 90.0de     |
| PowerMax 3          | 30fl oz/a |      |            |
| Amsol               | 2.5% w    |      |            |
| Select Max          | 61 oz/a   |      |            |
| Amsol               | 3qtia     |      |            |
| COC                 | 1qtia     | 8    |            |
| 19 Enlist One       | 2ptia     | A    | 94.3a-d    |
| PowerMax 3          | 301 oz/a  |      |            |
| Amsol               | 2.5% w/   |      |            |
| Assure II           | 41 oz/    |      |            |
| Amsol               | 3qtia     | B    |            |
| COC<br>20 WEED FREE | 1qtia     | В    | \$9.0a     |
|                     |           |      |            |

For Additional Information: *Ryan Miller, mill*0869@*umn.edu* 



For Additional Information: *Ryan Miller, mill*0869@*umn.edu* 

## Corn stalk rot survey – 2022: Northwest Minnesota

Cooperators: Personnel visited fields of cooperating producers in Becker, Clay, Kittson, Mahnomen, Marshall, Norman, Pennington, Polk, Red Lake and Roseau Counties.

#### **Purpose of Study:**

During a fall survey of 38 corn fields in Becker, Beltrami, Clay, Kittson, Mahnomen, Marshall, Norman, Pennington, Polk, Red Lake and Roseau counties in NW MN for European corn borer, personnel also assessed stalk strength using a "standard" push-test. Briefly, 50 random plants in each field were pushed at ear height more than 30 degrees from vertical. Plants 'failed' this test by permanently bending or breaking and not returning upright, indicating poor stalk strength.

This survey was not designed to differentiate between stalk quality issues caused by disease or other stressors but rather to assess standability of the 2022 corn crop.

#### **Results:**

Developing corn kernels place a high demand on the plant for sugars. Stress slows photosynthesis, reducing the amount of sugar the plant can produce. Different stresses can reduce the rate of photosynthesis: too much or too little moisture, nutrient imbalances, plant injury (ex.: hail, insects, diseases), excessive plant populations, and even long-periods of cloudy weather.

Hybrid genetics and/or high yield potential combined with stress during grain fill can increase the probability of stalk quality issues. Stalk quality tends to decrease the longer the crop remains in the field unharvested.

If a plant is unable to keep up with kernel sugar demand, it can rob sugars from stalk tissue, deteriorating stalk integrity and predisposing it to stalk rotting fungi.

In NW MN, the percentage of plants suffering from stalk rot ranged from a low of 0 percent (6 fields) to a high of 36 percent (1 field; **Figures 1 and 2**); 39% of the fields had stalk quality issues that might have impacted harvestability, fewer than the 51% of fields in 2021.

Crop stressors in 2022 included planting into unfit fields or planting later than normal due to excessive spring rains and mild temperatures throughout much of the growing season. Mudding in the crop or too much soil moisture can negatively impact root function and cool temperatures are unconducive for efficient photosynthesis. Slowed photosynthetic rate slows the accumulation of sugars needed for grainfill, and plants begin mining carbohydrates from stalks to fill kernels, predisposing stalk to pathogen infection.

For Additional Information: Angie Peltier, Anthony Hanson, Ryan Miller, Bruce Potter, Bill Hutchison or Dean Malvick

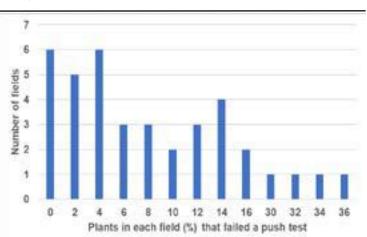
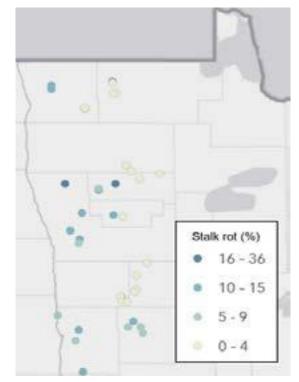




Fig. 1. The percentage of plants failing the push test.



**Fig 2.** The location of fields surveyed and the percentage of plants failing the push test in 38 fields in 2022.

# Evaluating soybean varieties to identify genetic and sources of resistance and escape against white mold

**Results:** 

**PROJECT OBJECTIVES:** 

1. GOAL: Characterize the aggressiveness of S. sclerotiorum isolates for use in future pathogen

This study aims to characterize Minnesota isolates

in soybean to establish a range of native, biologically

relevant isolates for germplasm screening and fungal biology assays in Minnesota. So far, we have developed an isolate collection of 22 isolates. These isolates have been collected mostly from the Northwestern part

of Minnesota (near Crookston). Isolates were surface

sterilized using 10% bleach and 70% ethanol solutions.

They were then plated, bulked on carrots and stored.

biology and resistance screening assays

Cooperators: Megan McCaghey, Ashish Ranjan (data not shown), Aaron Lorenz, Suma Sreekanta, Hsuan-Fu Wang, Alisha Hershman Wade Webster, Damon Smith

For Additional Information: Megan McCaghey, Ashish Ranjan, or Aaron Lorenz

Project Funding Provided by: Minnesota Soybean Research and Promotion Council

#### **Purpose of Study:**

The purpose of this work was to develop tools for white mold resistance breeding and research in Minnesota. White mold is caused by the soilborne fungal pathogen, Sclerotinia sclerotiorum and can cause severe yield losses when conditions are suitable for disease development. One of the most effective means to control white mold is the use of resistant cultivars. This work aimed to characterize Sclerotinia sclerotiorum isolates, collected throughout Minnesota, that can be used to comprehensively screen soybean lines and study fungal biology. We are also working to compare field techniques for infesting research fields to conduct research on white mold management under more consistent disease pressure. Lastly, this project aims to define relationships between canopy architecture and S. sclerotiorum development, to provide another, underexplored consideration for disease resistance breeding white mold. The goals of this work will set the stage for my soilborne fungi pathology lab to conduct biologically relevant SSR research in soybean and will open new, creative avenues to improve resistance to this challenging fungal disease.

#### 15 MNSS1 P Lesion length (mm) MNSS2 P 10 MNSS4 P MNSS6 P MNSS4 V 5 MNSS6 V MNSS7 V 0 empty plug 0 50 100 150 HPI

#### or preliminary screenings, seven isolates of S. evelopment. One of the most effective means to ontrol white mold is the use of resistant cultivars. This

as indicated by lesion size on soybean over time. An "empty plug" of agar with no fungus was used as a control to show that lesions were caused by the fungus, not cutting of the petiole. Three plants were inoculated in a single pot and five pots were inoculated per isolate (15 plants per isolate) at the V4 growth stage. The treatments were arranged in a randomized complete block design in the growth chamber. Lesions were measured at 24, 96, and 120 hours post inoculation (HPI). Screenings will continue through the fall and winter. Consistent lesions formed on plants and allowed the isolates to be compared. Results of the initial screening indicated differing levels of aggressiveness per isolate (Figure 1). For example, MNSS4 P (light blue) appears to be less aggressive than MNSS4 V (bright pink).

Figure 1. Lesion size on soybean at 24, 96, and 120 hrs after being inoculated (HPI) with seven isolates of S. sclerotiorum. Graph provided by new graduate student, Hsuan-Fu Wang.

Continued on next page ->

Once we identify a panel of isolates with different levels of aggressiveness, we can test whether isolates will distinguish the resistance ranking of cultivars. Using three representative isolates, we will inoculate soybean check lines developed by Dr. Damon Smith's Lab at University of Wisconsin, Madison with known low, moderate, and high levels of resistance (compared to susceptible controls) to see if resistance rankings are similar when challenged with the new, UMN isolates and whether our isolate panel can differentiate putative resistant from susceptible lines.

# 2. GOAL : Define relationship between canopy architecture and SSR development

In addition to physiological resistance, plant architecture may be an important for avoiding soybean infection by S. sclerotiorum in the field. Apothecia (the mushrooms required for infection of the pathogen) production is influenced by moisture and light (quality and quantity)



The Lorenz Lab

*Light detection under the soybean canopy with a UVB meter* 

planted soybean panels (of diverse plant architectures) in Waseca on 5/16/22 and in St. Paul on 6/8/2022. In total, we are evaluating three trials, in both Waseca and St. Paul. Suma Sreekanta, the postdoctoral researcher in the Lorenz Lab, is collecting data on various phenotypic traits that impact light penetration to the ground (where apothecia form) including branch angle, branch number, canopy coverage, and leaf area. Drone data for canopy coverage has been underway once or twice a week since planting.

We scouted for apothecia in each row of soybeans using a t-shaped PVC push pole prior to flowering (in St. Paul) and at early flowering stages (Waseca) through canopy closure, when apothecia begin to develop. The plots were checked in St. Paul on 7/13/2022, 7/22/2022, 7/27/2022, 8/4/2022, and 8/16/2022. We scouted for apothecia in Waseca on 8/2/2022, and 8/17/2022. No apothecia were observed. We also conducted disease assessments at the R6, full pod growth stage. In Waseca, disease assessments were conducted on 8/17/2022 and we saw no white mold. We also conducted disease assessments in St. Paul on 9/13/22 but only had only one plot with disease pressure. The lack of apothecia and disease is likely related to the drought experienced earlier in the summer, and we anticipate that our data collection will be improved with white mold nurseries in the future (Goal 3).

We collected light measurements using a UVB meter in St. Paul starting at beginning flowering, the time most important for Sclerotinia infection, and through canopy closure on 7/22/2022, 7/28/2022, and 8/4/2022. UVB captures that spectrum of wavelengths considered to be the most important for apothecia production. Measurements were conducted in the morning on days with no cloud cover that might block the UVB penetration to the ground. Measurements were captured in the center of each two rows at 0", 7.5", and 15" from the base of the plant. Comparisons of light conditions under the architecturally diverse lines will be made along with phenotypic comparisons that may contribute to white mold development this fall.

Based on phenotypic data, we will narrow down the number of lines to a panel with a range of the traits measured. We will inoculate them with S. sclerotiorum in the greenhouse and compare their genetic resistance based on lesion progression over time.

# 3. GOAL: Develop reliable S. sclerotiorum nurseries for future SSR field trials

Currently, researchers do not have field sites with reliable and uniform inoculum where we can conduct white mold experiments (personal communication). High disease pressure, across plots is often required to observe the impact of experimental treatments (such as variety resistance differences or fungicide efficacy).

This summer, we initiated a trial comparing three methods to encourage uniform disease pressure for trials in 2023. These include 1) growing sunflowers, which are susceptible to white mold, inoculating them the back of the head with a slurry of S. sclerotiorum, and then incorporating residue into the soil in the fall of 2022. We also added 2) sclerotia inoculum generated in the lab on carrot seed into the field during the fall before 2023 trials. Cold conditioning over the winter should allow the inoculum to produce apothecia in the following field season. In the third method, 3) we are growing sclerotia in the lab, cold conditioning them in the fridge, and then will spring apply the sclerotia to the field. 4) Untreated, naturally infested plots will be left as controls to compare with plots treated with the described infestation methods.

Towards this objective, plots were planted on 6/3/2022 at The Northwest Research and Outreach Center (NROC) in Crookston, MN. The variety used was an early, Phomopsis and SSR susceptible Nuseed variety, N4HM354. The trial is a randomized complete block design and each treatment is repeated six times. It was planted on 22" row spacing. Rows are 20 feet long and each treatment plot contained six rows. There is a four-foot buffer of untreated buffer between plots to prevent unintended inoculum spread. Five-foot alleys were left on the front and back of rows. These trials are misted during early flowering until beginning dry down to encourage disease development.

We inoculated plots with a slurry of Sclerotinia at full flowering on 8/22/2022. Slurry was a prepared with a mixture of cultures from three isolates. We chose isolates with a range of aggressiveness, based on the results displayed in Table



Sunflower Sclerotinia slurry inoculations in disease nurseries

1. We have also bulked sclerotia on autoclaved carrots and will apply sclerotia in field plots in the fall, to cold condition in the field and in the spring after cold conditioning in the lab refrigerator. We will apply 30 ml of sclerotia per plot.

In 2023, soybean will be evaluated in the plots and their incidence and severity of SSR infections will be compared. Apothecia density will also be monitored. It is expected that this work will allow for more uniform, consistent disease pressure in which to compare the performance of soybean lines and treatments for SSR. County/Region: 2022 Continued Evaluation of Conventional Variable Rate Herbicide Tank Mixes on Waterhemp Control – Renville County/South Central

#### Cooperator: Next Gen Ag LLC

Nearest Town: Renville, MN Soil Type: Webster Clay/4.5% OM/Fine Texture Tillage: Conventional Previous Crop: Corn Plant Date: May 24th, 2022 Variety: Becks 1630E @ 150,000/A Row Width: 30 Inches Fertilizer: None Added Weed Management: Study Objective Insecticide: Seed Treatment Only Harvested Population: N/A Harvested Date: N/A Experimental Design: RCBD (Randomized-Complete Block Design)

#### **Purpose of Study:**

Waterhemp continues to be a challenging weed in farmer fields rapidly developing resistance to multiple modes of action that results in grower continued reliability of genetically engineered herbicide trait resistance. Adding 2, 3, 4, and more trait resistances in soybeans will inevitably result in continued development of waterhemp resistance with no remaining modes of action as adding one herbicide resistant trait into the genetics at a time allows an already resistant population to the previous 3 modes of action plenty of time to develop resistance to a fourth post-emergent mode of action. Residual herbicides are the only way to limit resistance as these products engage the weed at the most vulnerable part of the life cycle (emergence). This study focuses on variable rate tank mixes of conventional residual herbicides with target goals of achieving 95% waterhemp control

at a relative cost of \$35-\$40 per acre. The cost goal was targeted well before the volatile and substantial inflation impact of 2022, so treatments that achieved the cost goal at grant writing in 2021 likely now exceed no longer meeting criteria. A program that combines multiple modes of action and uniformity of use across all genetics.

#### **Results:**

- 1. 2021 Data in Combined Analysis Impacted the A+28 Due to Lack of Early Activating Rain on PRE.
- 2. 2022 Data had an Early Activating Rain After PRE and 80% of Entries Achieved the 90%+ Threshold with 45% Achieving 95%+.
- 3. Applying Variable Rate Tank Mixes as a single PRE or two-pass is effective.
- 4. PRE only VRTM control at A+56 ranged from 87-97% and averaged 92%.
- 5. PRE fb Layby VRTM control at A+56 ranged from 79-98 and averaged 92%.
- Best end of season treatments were a result of ONLY Flexstar POST. Flexstar applied alone POST vs. part of PRE tank mix increased control by 3-5%.
- 7. Treatments are on label, but there are specific guidelines surrounding Valor SX and Warrant tank mixes. This study does not violate those guidelines, but growers should read both product labels to understand the potential risk.
- 8. After 5 years of evaluating these products across 26 different soybean varieties and 4 companies I have witnessed injury once and crop recovered within a week.
- 9. Grower's farming soils higher in sand (>33%) and/or lower in %OM (<4.5%) should consider experimenting on the lower end of tank mix rates.

Waterhemp Control from Residual Variable Rate Tank Mixes in Soybean, Renville, MN 2022 & Combined

|                                    |                         |     | Waterhemp Control |     |     |     |     |      |     |      |
|------------------------------------|-------------------------|-----|-------------------|-----|-----|-----|-----|------|-----|------|
| Treatment <sup>ª</sup>             | Rate                    | A+  | 14 <sup>b</sup>   | A+  | 28  | A+  | 42  | A+56 |     | Code |
|                                    |                         | '22 | 2YR               | '22 | 2YR | '22 | 2YR | '22  | 2YR |      |
|                                    | oz/A* or fl oz/A        |     |                   |     | 9   | 6   |     |      |     |      |
| Val + War + Zid + Flx <sup>c</sup> | *1.5 + 30 + 3.25 + 7.5  | 100 | 100               | 99  | 79  | 88  | 83  | 85   | 87  | Α    |
| Val + War + Zid / Flx              | *1.5 + 30 + 3.25 / 7.5  | 98  | 93                | 100 | 86  | 96  | 91  | 96   | 90  | A/B  |
| Val + War / Zid + Flx              | *1.5 + 30 / 3.25 + 7.5  | 98  | 96                | 100 | 85  | 91  | 93  | 90   | 91  | A/B  |
| Val + Zid / War + Flx              | *1.5 + 3.25 / 30 + 7.5  | 94  | 94                | 99  | 76  | 97  | 92  | 97   | 89  | A/B  |
| Val / War + Zid + Flx              | *1.5 / 30 + 3.25 + 7.5  | 95  | 94                | 90  | 60  | 92  | 90  | 92   | 79  | A/B  |
| Val + War + Zid + Flx              | *2 + 40 + 4 + 10        | 100 | 100               | 99  | 94  | 95  | 96  | 95   | 95  | Α    |
| Val + War + Zid / Flx              | *2 + 40 + 4 / 10        | 98  | 99                | 100 | 83  | 99  | 99  | 98   | 98  | A/B  |
| Val + War / Zid + Flx              | *2 + 40 / 4 + 10        | 93  | 96                | 99  | 74  | 91  | 93  | 89   | 91  | A/B  |
| Val + Zid / War + Flx              | *2 + 4 / 40 + 10        | 96  | 95                | 100 | 76  | 94  | 93  | 93   | 94  | A/B  |
| Val / War + Zid + Flx              | *2 / 40 + 4 + 10        | 93  | 96                | 89  | 66  | 90  | 89  | 89   | 89  | A/B  |
| Blkt + Val + War + Flx             | 6 + *1.5 + 30 + 7.5     | 100 | 100               | 99  | 86  | 89  | 93  | 84   | 89  | Α    |
| Blkt + Val + War / Flx             | 6 + *1.5 + 30 / 7.5     | 98  | 99                | 99  | 74  | 95  | 94  | 93   | 93  | A/B  |
| Blkt + Val / War + Flx             | 6 + *1.5 / 30 + 7.5     | 100 | 94                | 93  | 68  | 93  | 89  | 91   | 89  | A/B  |
| Blkt + Val + War + Flx             | 8 + *2 + 40 + 10        | 100 | 100               | 100 | 88  | 91  | 92  | 91   | 92  | Α    |
| Blkt + Val + War / Flx             | 8 + *2 + 40 / 10        | 100 | 100               | 100 | 91  | 100 | 99  | 99   | 97  | A/B  |
| Blkt + Val / War + Flx             | 8 + *2 / 40 + 10        | 99  | 99                | 100 | 85  | 95  | 95  | 95   | 94  | A/B  |
| Blkt + Val + War + Flx             | 10 + *2 + 48 + 12       | 100 | 100               | 98  | 80  | 88  | 92  | 93   | 94  | Α    |
| Blkt + Val + War / Flx             | 10 + *2 + 48 / 12       | 100 | 100               | 100 | 95  | 99  | 99  | 99   | 98  | A/B  |
| Blkt + Val / War + Flx             | 10 + *2 / 48 + 12       | 100 | 100               | 100 | 89  | 98  | 96  | 97   | 94  | A/B  |
| Blkt+Val+War+Flx+Zid               | 8 + *2 + 40 + 10 + 3.25 | 100 | 100               | 100 | 86  | 100 | 99  | 100  | 97  | Α    |
| LSD (0.1)                          |                         | 6   | 6                 | 6   | 17  | 7   | 7   | 9    | 9   |      |

<sup>a</sup>PRE treatment applications contained no additional adjuvants; MSO at 0.5% v/v POST.

<sup>b</sup>A+[number]=Days after "A" application.

<sup>c</sup>Flx=Flexstar; War=Warrant; Val=Valor SX; Blkt=Blanket; Zid= Zidua SC equivalent. COST: Trt 1 thru 5=\$35; Trt 6 thru 10=\$45; Trt 11 thru 13=\$27; Trt 14 thru 16=\$36; Trt 17 thru 19=\$42; Trt 20=\$54.



# 2022 Western Minnesota Soybean Crop & Pest Survey

Cooperators: Minnesota Soybean Research & Promotion Council, NDSU IPM Survey

#### Purpose of Study:

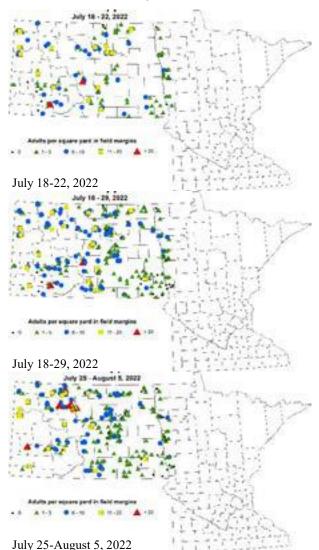
The soybean crop and pest survey was designed to provide in-season data about regional pest pressure to assist farmers and consultants in making pest management decisions. The 2022 growing season was the seventh that UMN Extension undertook this MSR&PC-sponsored survey.

This project was coordinated with a similar survey undertaken by the NDSU IPM team. Bi-state survey maps were made by NDSU IPM and are available on the NDSU Pest Management website: https://www.ag.ndsu.edu/ndipm/ipm-survey-archives/

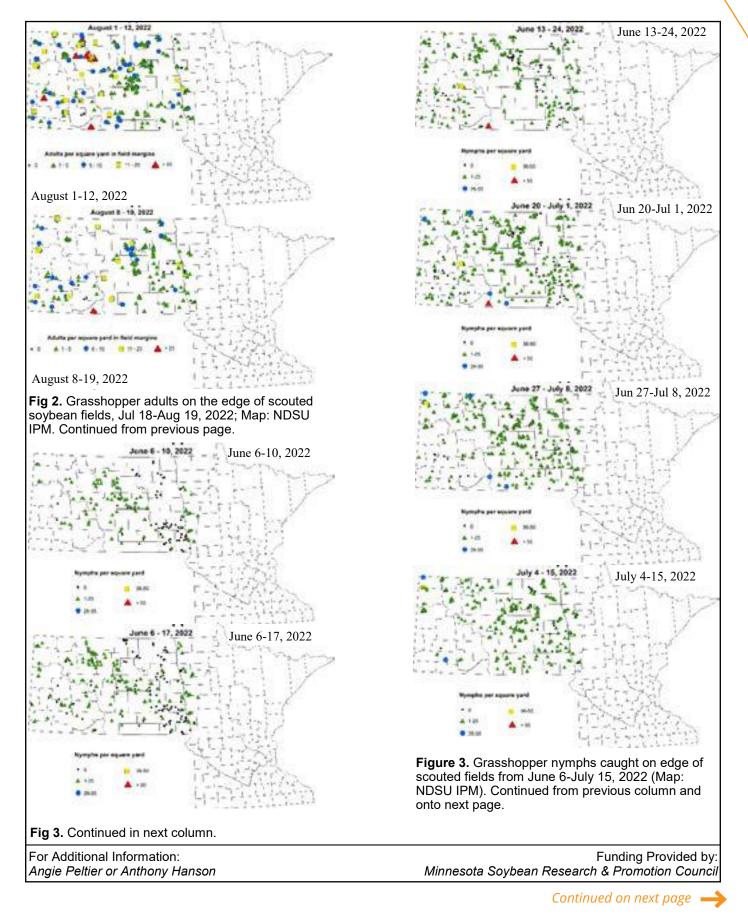
#### **Results:**

Field surveys of randomly selected Minnesota soybean fields were initiated on June 20. A total of 514 fields were surveyed from June 20 through August 19 in MN and ND. A total of 109 field visits occurred in Minnesota in 2021. The Minnesota survey locations were fewer than in past years due to difficulty recruiting scouts.

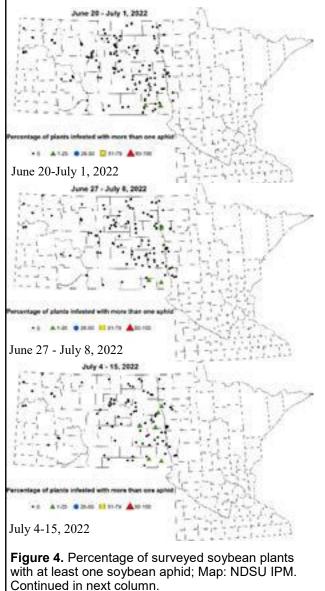
Although the 2022 growing season began approximately 2-4 weeks later than normal, the final growth stages observed in NW MN were similar to those observed in 2021 (**Fig 1**).

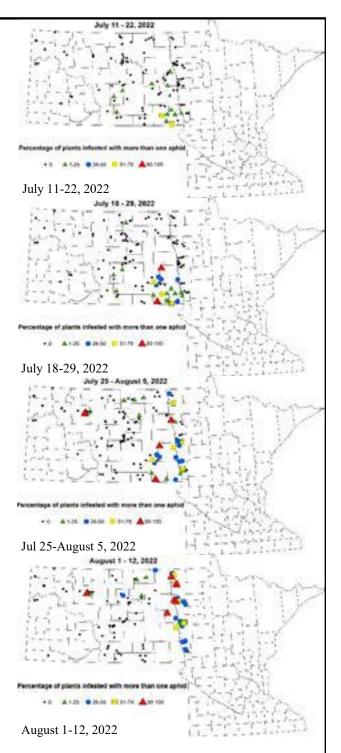






At each field, the scout collected data both inside and outside fields. Outside each field, grass areas that bordered fields were swept for grasshoppers (**Figure 2**) and their nymphs (**Figure 3**).

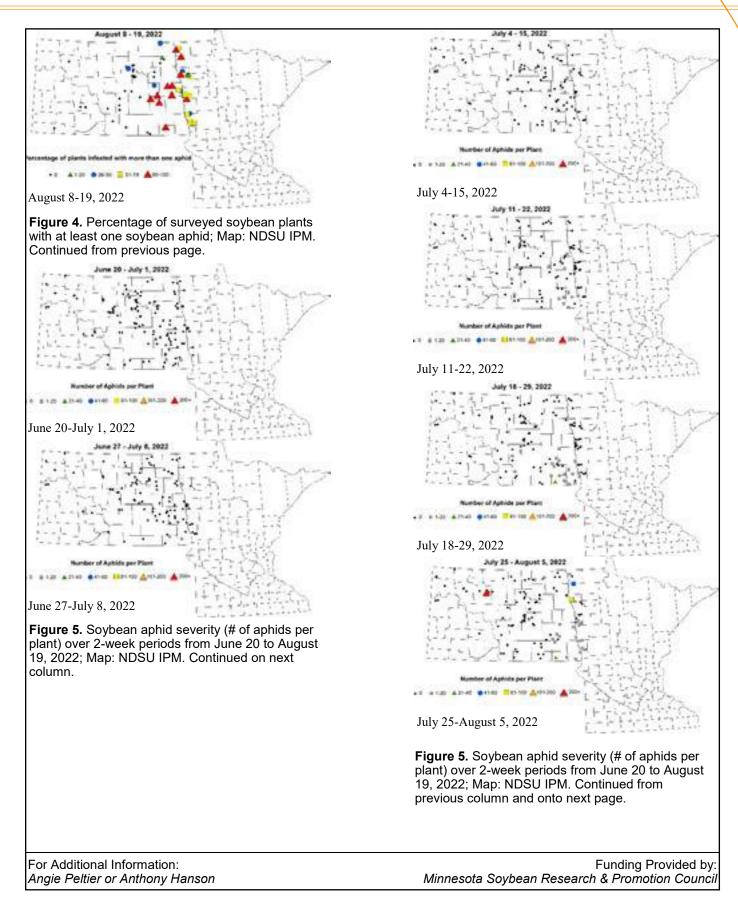
Overall, after the 2021 drought and favorable overwintering conditions, wet spring weather likely allowed for some mortality of overwintering grasshopper eggs.


For Additional Information: Angie Peltier or Anthony Hanson

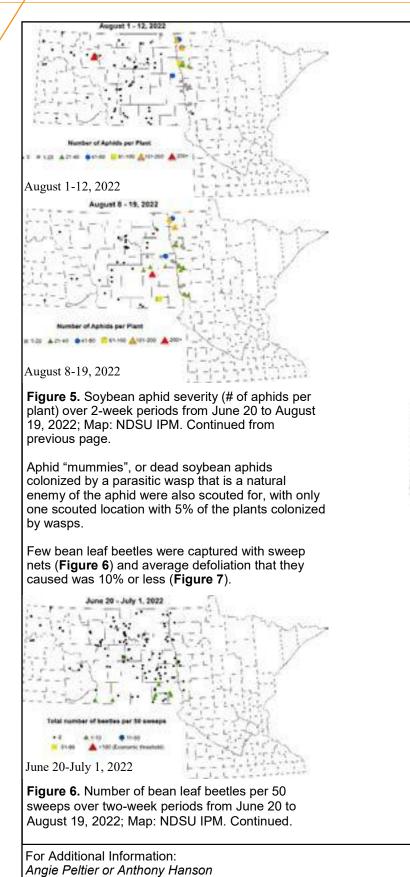


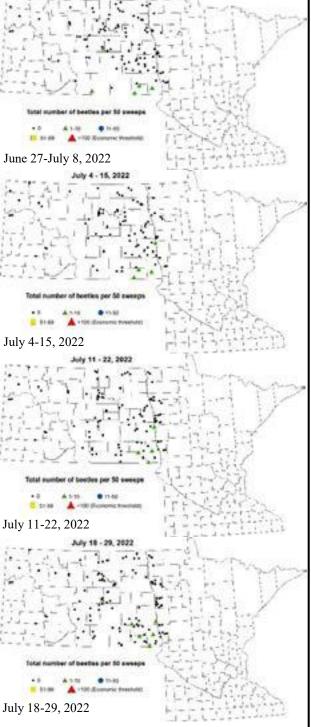

**Fig 2.** Grasshopper adults on the edge of scouted soybean fields, Jul 18-Aug 19, 2022; Map: NDSU IPM. Continued on next page.



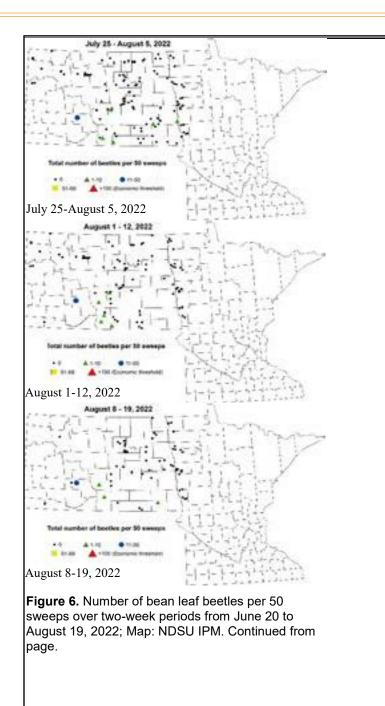

Although soybean aphid incidence (the percentage of plants within a field that were infested) continued to grow throughout the growing season (**Fig 4**), the population density, or average number of soybean aphids per plant, of these infestations remained well below the soybean aphid treatment threshold of 250 aphids per plant, averaging less than fewer than 200 aphids per plant at all but two locations (**Fig 5**).

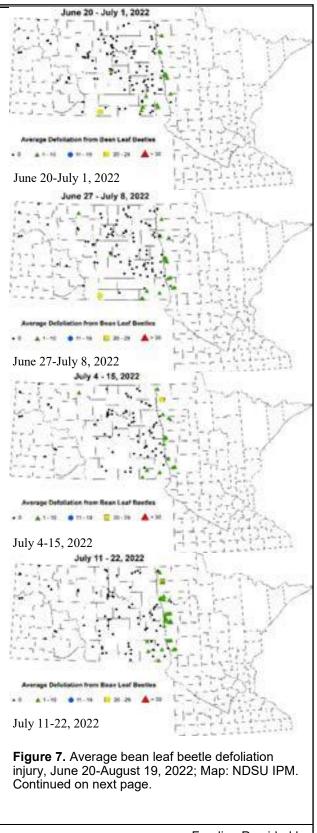






**Figure 4.** Percentage of surveyed soybean plants with at least one soybean aphid; Map: NDSU IPM. Continued from previous column and onto the next page.

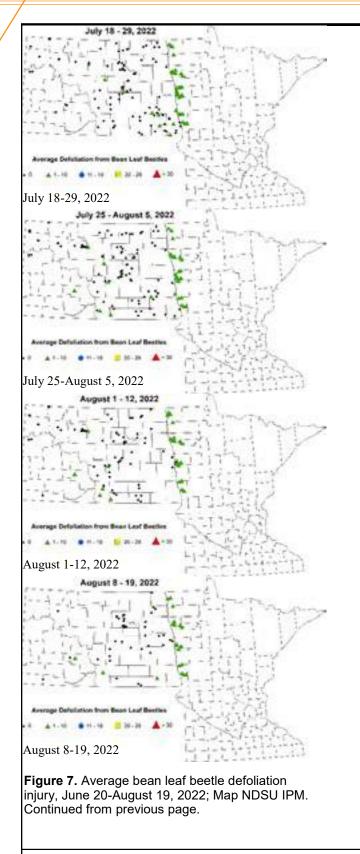
For Additional Information: Angie Peltier or Anthony Hanson





Continued on next page 🔶






**Figure 6.** Number of bean leaf beetles per 50 sweeps over two-week periods from June 20 to August 19, 2022; Map: NDSU IPM. Continued from previous column and onto next page.





For Additional Information: Angie Peltier or Anthony Hanson





Unlike in 2021, when severe to exceptional drought conditions favoring spider mite infestations on plants growing along field borders and soybean plants within fields, spider mites were neither observed outside or within scouted fields in 2022.

While scouting for soybean gall midge larvae also took place in all surveyed fields for the first time in 2022, none were observed.

**Preserving a.i.'s efficacy.** Insecticides have been widely used in soybean production, often without consideration of treatment thresholds, as 'cheap and easy insurance' when added to the spray tank when making post-emergence herbicide or fungicide applications.

As scouted fields in NW MN did not reach treatment thresholds for commonly occurring pests like soybean aphids or two-spotted spider mites, unnecessary pesticide applications could have been avoided by most. Avoiding unnecessary applications helps to preserve a.i. efficacy. Each time that an insecticide or miticide is used, it selects those insects or mites that are resistant to that active ingredient(s) (a.i.) to survive and reproduce, killing those that are sensitive to the a.i. Over time this results in a population shift from one that is largely a.i.-sensitive to one that is largely a.i.-resistant.

Do your best to avoid unnecessary pesticide applications. Insecticide and fungicide applications can adversely affect biological control conferred by natural predators (like the parasitic wasps that colonize soybean aphids) or entomopathogenic fungi and may actually cause spider mite populations to flare up.

For Additional Information: Angie Peltier or Anthony Hanson



# **Minnesota Small Grains Pest Survey**

#### Dr. Anthony Hanson, Dr. Jochum Wiersma

Project Period: 01/01/2022 - 12/31/2022

#### **Research Question/Objectives :**

The goals of this pest survey are to produce timely alerts for small grain producers throughout the growing season so that sound economic control options can be implemented. We plan to integrate this survey with the ongoing efforts in North Dakota that are coordinated by NDSU's IPM Survey to improve efficiency and impact of this program across Minnesota and North Dakota. Specific project objectives include:

- Survey small grain fields each week from mid-May through July in western and northwestern Minnesota small grain production areas monitoring for agronomic, insect and disease issues
- 2. Generate survey maps along with NDSU Extension cooperators regarding scout findings.
- 3. Provide timely alerts about pest and disease issues in small grains so that producers can implement sound economic control options.
- 4. Estimate the area in which wheat stem sawfly has established successfully as an economic pest in spring wheat in Minnesota

#### **Results:**

The 2022 small grain scouting program had 97 unique field visits during the 2022 small grain scouting season in approximately 23 fields. These fields were volunteered by producers in early spring and scouted throughout spring and early summer by one survey scout centered around the Moorhead area. Due to tight and extremely competitive hiring conditions this year, the remaining scout positions in Crookston and Morris were not able to be filled. Therefore, areas scouted focused on northwestern Minnesota ranging from Kittson County in the north to Wilkin County in the south. Scouting started in June 3 and continued until the crop had reached maturity in mid-July. Delayed planting from wet spring conditions also resulted in fewer fields available and volunteered this year.

Data was collected on severity and incidence of the major cereal diseases in Minnesota as well as some of the important insect pests. Data was submitted each week to the NDSU IPM team who generated distribution maps for the region (See Appendix). Archived distribution data can be found at: https:// www.ag.ndsu.edu/ndipm for various crops. Postings were also made to the Minnesota Crop News Blog at https://blog-crop-news.extension.umn.edu/ for commentary on disease development. There was a total of 11 pest updates posted to the Minnesota Crop News Blog, with a total of over 2780 views, averaging nearly 250 views per post.

In general, 2022 was another quiet year for small grain diseases. Despite initial cool wet conditions, very few diseases were found throughout the growing season, largely due to lack of moisture in many parts of the state later in summer, which did not provide conditions conducive for many of the fungal diseases to develop. Tan spot was the only major disease found in some Minnesota fields at up to 50% incidence.

Cereal aphids were not found in the sampled areas this year. This may be due to the reduced sampling area and number of fields, though aphid reports from growers were also low this year. However, barley yellow dwarf virus, which is vectored by those aphids, was also not found in the survey this year. Grasshoppers appeared in the sweep net samples from early-June onward, though both adults and nymphs were at low populations throughout the year. Grasshopper populations were high last year going into last fall, so risk was originally high this spring. Cool wet weather this spring likely helped control and reduce grasshopper populations before they became a major risk. Wheat stem sawfly was not found in the survey, but two fields in Minnesota were found with stem maggot at 11-20% incidence. The Season Summary maps by disease or insect are provided as a reference in an appendix at the end of the report (Appendix 1)

#### **Application/Use:**

Results from this scouting project are used widely by farmers, crop consultants, and Extension educators throughout Minnesota. The in-season commentary published to the Minnesota crop news blog provides Minnesota farmers with real-time pest issues and recommendations to make informed pest management decisions.

These results were also used to give updates during summer webinars, such as Strategic Farming: Field Notes. These findings were also included at in-person events such as Farmfest where growers could ask about current pest issues during the year and the Institute for Ag. Professionals Field School in St. Paul wheat pest ID sections.

#### **Materials and Methods:**

Three scouts operating throughout western Minnesota scouted approximately 20-30 small grains fields per week during the small grain growing season. Scouts underwent training at the beginning of the season with the NDSU IPM scouts to learn how to identify and score pest incidence and severity and how to record the data collected. The MN survey was conducted according to the same protocol followed by the NDSU IPM survey so that the output could be merged and reflect a regional effort. The only difference from the North Dakota survey is fields in Minnesota are volunteered each spring to ensure we have permission to scout various fields in addition to variety trial locations. Scouts collected GPS data to aid the construction of distribution maps for each week of data collected for each disease/ insect pest. Fields were scouted by walking out past the headland in each field and walking a "w" pattern and taking observations of 10 plants at each point of the "w". Sweep nets were used to monitor the number of grasshoppers per four sweeps in field margins and ditches. Incidence and severity data were collected for Leaf rust, Tan Spot, Septoria spot blotch, and FHB. Incidence only data was collected for Bacterial leaf streak, Barley yellow dwarf, Wheat streak mosaic virus, Stem rust, Stripe rust, Powdery mildew and Loose smut. For FHB, scab index was calculated by combining the severity and incidence data. The weekly scouting data was combined and sent to the NDSU IPM team who then used this data to construct both weekly distribution maps, as well as end of season maps. Data was interpreted and distributed weekly as commentaries posted to the Minnesota Crop News blog.

#### Economic Benefit to a Typical 500 Acre Wheat Enterprise:

A follow-up survey to the users of the Minnesota Crop News blog and the disease risk assessment websites is necessary to fully assess whether the timely disease and pest updates and commentary altered producer decisions for their disease and pest management in 2022. Each update posted to the Minnesota Crop News Blog had an average of nearly 250 page visits, indicating a large potential impact with this scouting program as most Minnesota Crop News blog subscribers are farmers or crop consultants. Even small impacts on a typical wheat enterprise have the potential for large economic benefits, as informed pest management decisions can easily provide impacts of more than \$10 per acre, with drastically greater impacts in some situations. Even at these conservative levels a 500 acre wheat enterprise could increase gross returns by \$5,000 in a given year with timely alerts. This year, the lack of major pest issues in the surveys would reassure growers that risk was low for economic loss for pests, and that extra costs for pest management largely were not needed.

#### **Related Research:**

This project directly ties in with the North Dakota State University Integrated Pest Management scouting program in North Dakota as reflected by the regional scouting maps produced between the two programs. This project also ties in with the Wheat Stem Sawfly screening program in an effort to identify the geographic area affected by Wheat stem sawfly. This project also ties with the Minnesota Soybean Scouting project funded by the Minnesota Soybean Research and Promotion Council, as these programs complement each other, providing a full summer scouting experience for our crop scouts, who are able to scout small grains in the spring and early summer while shifting to soybeans mid-summer.

#### **Recommended Future Research:**

The PIs would like to continue the small grains pest survey across the state to continue monitoring pest levels in the state and to continue providing wellinformed commentaries for Minnesota small grain producers into the future. The hope is to expand the scouting program to include three locations in the state again to obtain better coverage of fields in the western half of the state.

#### **Publications :**

Minnesota Crop News (https://blog-crop-news. extension.umn.edu/)

- Small Grains Disease Update 06/01/2022. 217 views.
- Small grains disease update 06/09/2022. 193 views.
- Small Grains Disease and Pest Update 06/15/2022. 163 views.
- Small Grains Disease and Pest Update 06/22/22. 278 views.
- Small Grains Disease and Pest Update 06/30/22. 181views.
- Small Grains Disease and Pest Update 07/06/22.

214 views.

- Small Grains Disease and Pest Update 07/12/22. 327 views.
- Small Grains Disease and Pest Update 07/20/22. 322 views.
- Small Grains Disease and Pest Update 08/10/22. 340 views.
- Small Grains (Harvest) Update. 545 views.

Strategic Farming: Field Notes webinar and podcast (https://strategicfarming.transistor.fm)

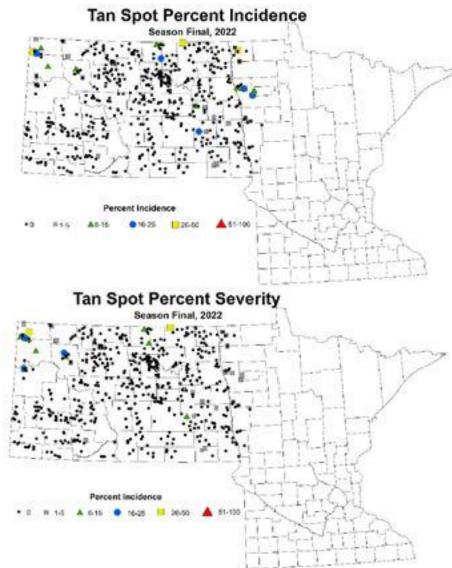
- May 19. "Field Notes discussed cool, wet spring and forecast's impact on crop and pest development". 332 views.
- June 21. "Strategic Farming: Field Notes session discusses early-season pest and weed management challenges". 200 views
- August 16. Strategic Farming: Field Notes. Late-

summer forage small grains outlook". 207 views.

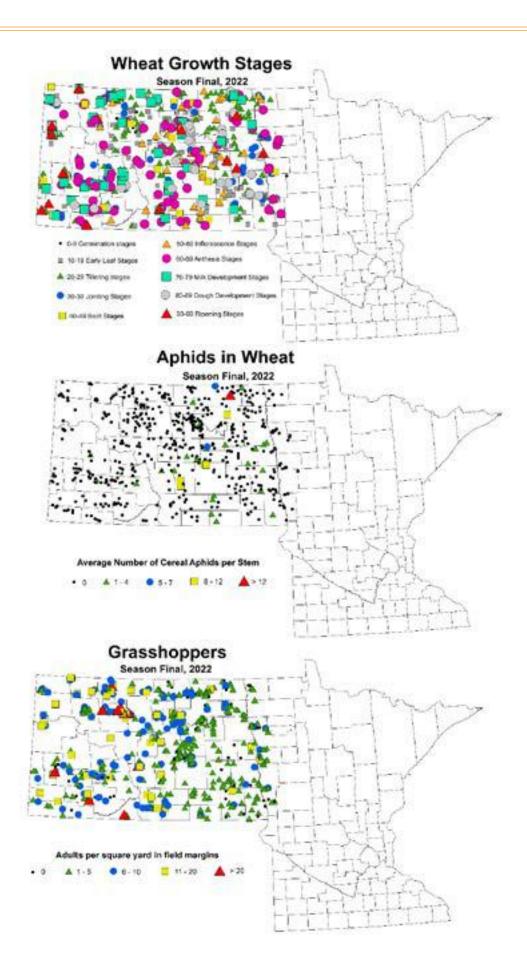
Cropping Issues in NW MN (https://blog-nwcrops. extension.umn.edu/)

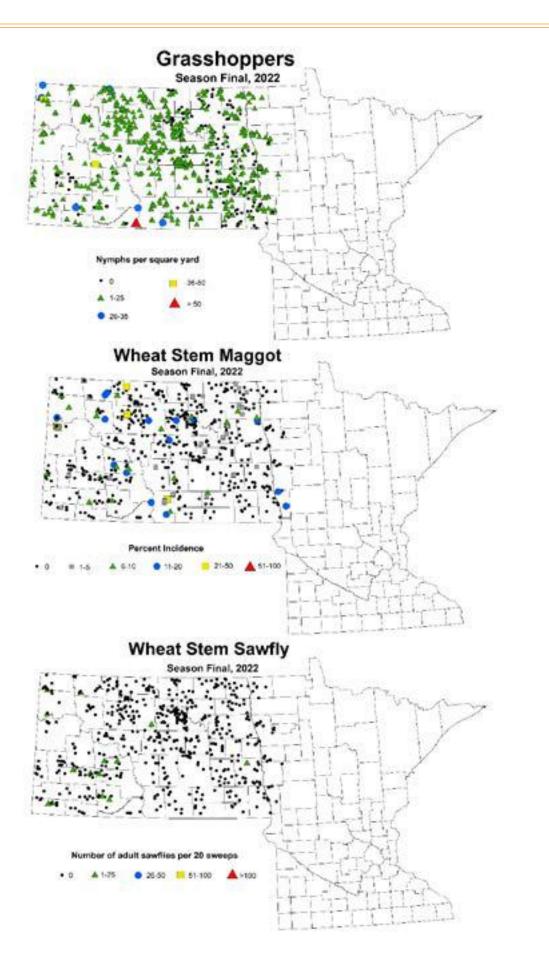
• August 25. "NW MN IPM Survey Results". 54 page views.

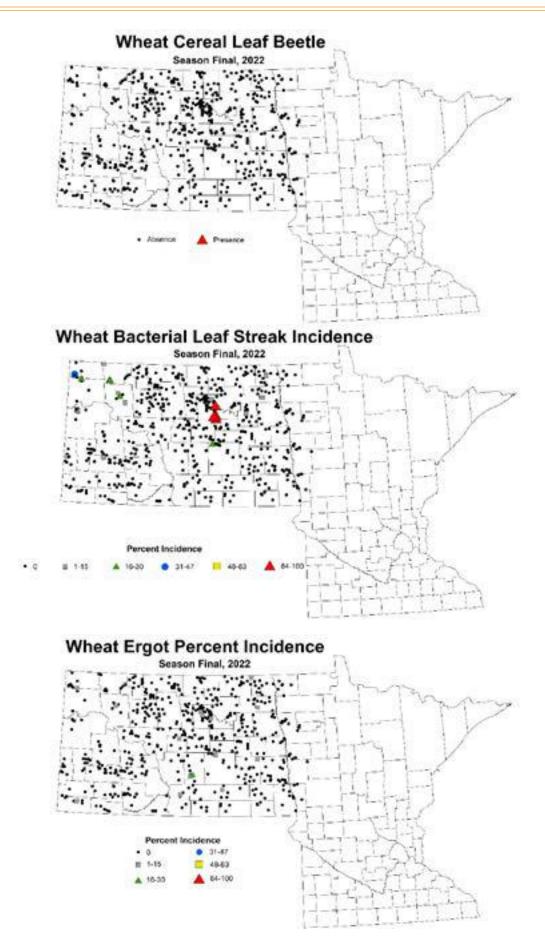
In-person programs

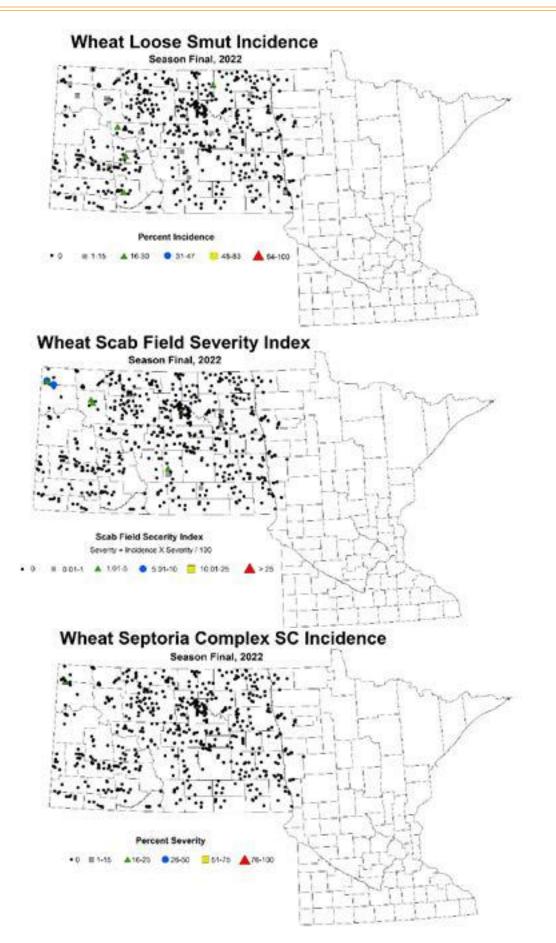

UMN Field School, UMN campus-area research farm, St. Paul, MN

- July 20: Crop Pest Management sessions (2), Robert Koch and Anthony Hanson, ~30 participants
- July 21: Soybean Insect Scouting & Management sessions (2), Robert Koch & Anthony Hanson, ~ 30 participants.


Farmfest, Redwood Falls, MN


• August 3-4: UMN IPM Tools of the Trade booth.




Continued on next page 🔶









# **2022 Hard Red Spring Wheat Regional Quality Survey**

#### Dr Shahidul Islam/Dr Richard Horsley

#### Project Period: 01/01/2022 to 12/31/2022

#### **Research Question/Objectives:**

Annual survey of hard red spring wheat grown in the Minnesota as part of North Great Plain states. The survey encompasses sample collection, analysis, and reporting important wheat quality attributes useful for marketing the crop. The range of environmental diversity, cultivars and agronomic practices results in a range of quality attributes and assessment of important marketing attributes of wheat entering into the commercial market channels.

#### **Results:**

A total of 117 samples of hard red spring wheats were collected from the state of Minnesota under two regional crop reporting areas (A and B). The number of samples collected was based on wheat production within each individual county. The greater the production the more samples were collected. In low producing counties a minimum of two samples were collected and in high producing counties a maximum of fifteen samples were collected. Every effort was made to obtain samples that accurately reflect condition of grain within an area that is available to the commercial market. The samples were collected under contract by the USDA-National Agricultural Statistics Service, located in Fargo, ND.

Approximately sixty percent of the HRS wheat samples obtained were graded by a federally licensed grain inspector. Additionally, these same samples were analyzed for protein content, falling number, test weight and thousand-kernel weight. Estimates of assay distributions within the wheat crop are made from these data. Samples representing each of the two hard red spring wheat crop reporting areas (CRA's) of Minnesota were prepared by combining equal portions of individual collected samples. Complete analyses were performed on those composite samples to assess quality. Assays include test weight, falling number, size distribution, protein, ash, 1000-kernel weight, grade, wet gluten, solvent retention capacity (SRC) etc. Milling yields were determined, along with flour ash and protein. The dough testing for the HRS wheat was

| County            | Samples collected |
|-------------------|-------------------|
| Region A          |                   |
| Kittson           | 15                |
| Roseau            | 13                |
| Marshall          | 13                |
| Polk              | 15                |
| Pennington        | 10                |
| Red Lake          | 8                 |
| Norman            | 15                |
| Mahnomen          | 4                 |
| Lake of the Woods | 2                 |
| Region B          |                   |
| Clay              | 8                 |
| Becker            | 4                 |
| Wilkin            | 7                 |
| Ottertail         | 3                 |
| Traverse          | 0                 |
| Grant             | 0                 |

the Farinograph, Alveograph and Extensograph. Endproduct performance model system is bread (100 g pup loaves). Bread criteria evaluated are baking absorption, bread loaf volume, crumb and crust color, symmetry, grain, and texture properties. Results of these analyses were reported on multiple tables in the published bulletin and presented in the following pages. Bulletins summarizing the HRS growing states findings were published for distribution primarily by the sponsoring agencies. Approximately 4,100 copies of report were printed. The data are also available electronically on the North Dakota Wheat Commission website.

In addition, wheat samples representing protein ranges of less than 13.5%, 13.5% to 14.5%, and greater than 14.5% protein (12% moisture basis) were prepared from the existing sample population. Complete wheat, flour, and bread baking analyses were performed on the protein-range samples. Reports summarizing the findings were submitted to U.S. Wheat Associates for incorporation into their international wheat marketing brochure.

#### Table 2: Wheat grading data

| Crop Growing<br>Area | Test Weight<br>(Ib/bu) | Test Weight<br>(KG/HL) | Damaged<br>Kernel (%) | Foreign<br>Materials (%) | Shrunken/Bro<br>ken kernel (%) | Total<br>Defects (%) | Wheat of Contrast<br>Classes (%) | Grade | Vitreous<br>Kernel (%) |
|----------------------|------------------------|------------------------|-----------------------|--------------------------|--------------------------------|----------------------|----------------------------------|-------|------------------------|
|                      |                        |                        | Kerner (%)            | . ,                      | . ,                            | . ,                  | . ,                              |       | . ,                    |
| MN A                 | 63.0                   | 82.9                   | 0.1                   | 0.0                      | 0.4                            | 0.5                  | 0.0                              | 1 NS  | 61                     |
| MN B                 | 62.4                   | 82.1                   | 0.1                   | 0.0                      | 0.6                            | 0.7                  | 0.0                              | 1 NS  | 52                     |
|                      |                        |                        |                       |                          |                                |                      |                                  |       |                        |
| 2022 Avg             | 0.0                    | 1.4                    | 0.0                   | 0.0                      | 0.0                            | 0.0                  | 0.0                              | 1 NS  | 0                      |
| 2021 Avg             | 62.8                   | 82.5                   | 0.0                   | 0.0                      | 0.4                            | 0.4                  | 0.0                              | 1 DNS | 83                     |

#### Table 3: Kernel quality data

| Crop     | Dockage | Moisture | 1000       | Kernel Size  | Kernel Size  | Protein     | Protein Content (%) | DON   | Wheat | Wheat Falling | Zeleny        |
|----------|---------|----------|------------|--------------|--------------|-------------|---------------------|-------|-------|---------------|---------------|
| Growing  | (%)     | (%)      | Kernel     | Distribution | Distribution | Content (%) | [12% moisture       | (ppm) | Ash   | Number (sec)  | Sedimentation |
| Area     |         |          | Weight (g) | medium (%)   | large (%)    | [Dry basis] | basis]              |       | (%)   |               | (cc)          |
| MN A     | 0.4     | 12.8     | 34.4       | 34           | 64           | 15.5        | 13.7                | 0.0   | 1.45  | 397           | 62            |
| MN B     | 0.3     | 13.0     | 29.9       | 56           | 41           | 15.8        | 13.9                | 0.0   | 1.56  | 386           | 63            |
|          |         |          |            |              |              |             |                     |       |       |               |               |
| 2022 Avg | 0.4     | 12.9     | 33.5       | 38           | 59           | 15.6        | 13.7                | 0.0   | 1.47  | 395           | 62            |
| 2021 Avg | 0.3     | 12.4     | 33.9       | 49           | 49           | 16.8        | 14.8                | 0.0   | 1.43  | 406           | 67            |

#### Table 4: Flour quality data

| Crop Growing | Extraction | Flour   | Flour   | Starch | Wet    | Gluten | Falling | Peak   | SRC: | SRC:  | SRC:    | SRC:      | SRC:      |
|--------------|------------|---------|---------|--------|--------|--------|---------|--------|------|-------|---------|-----------|-----------|
| Area         | (%)        | Ash (%) | Protein | Damage | gluten | Index  | Number  | 65G FL | GPI  | Water | 50%     | 5% Lactic | 5% Sodium |
|              |            |         | (%)     | (%)    | (%)    |        | (sec)   |        |      |       | Sucrose | Acid      | Carbonate |
| MN A         | 66.7       | 0.44    | 12.1    | 5.1    | 28.6   | 99     | 396     | 728    | 0.69 | 69    | 115     | 144       | 95        |
| MN B         | 67.3       | 0.48    | 12.3    | 5.0    | 31.7   | 99     | 397     | 664    | 0.67 | 70    | 113     | 143       | 101       |
|              |            |         |         |        |        |        |         |        |      |       |         |           |           |
| 2022 Avg     | 66.8       | 0.44    | 12.2    | 5.1    | 29.3   | 99     | 396     | 715    | 0.68 | 69    | 115     | 144       | 96        |
| 2021 Avg     | 67.1       | 0.49    | 13.7    | 5.6    | 35.6   | 96     | 408     | 755    | 0.72 | 72    | 116     | 153       | 97        |

#### Table 5: Dough physical properties data (Farinograph)

| Crop Growing Area | Absorption | Peak Time | Stability | MTI | Quality Number |
|-------------------|------------|-----------|-----------|-----|----------------|
| MN A              | 61.8       | 6.8       | 15.5      | 19  | 168            |
| MN B              | 60.6       | 7.3       | 13.9      | 23  | 153            |
|                   |            |           |           |     |                |
| 2022 Avg          | 61.6       | 6.9       | 15.2      | 20  | 165            |
| 2021 Avg          | 61.9       | 7.4       | 21.2      | 15  | 260            |

#### Table 6: Dough physical properties data (Extensograph and Alveograph)

| Crop Growing Area |                         |                      | Exter | nsograph                 | Alveograph            |      |     |     |      |     |
|-------------------|-------------------------|----------------------|-------|--------------------------|-----------------------|------|-----|-----|------|-----|
|                   | Extensibility<br>45 min | Resistance<br>45 min | Area  | Extensibility<br>135 min | Resistance<br>135 min | Area | Ρ   | L   | P/L  | W   |
| MN A              | 15.6                    | 581                  | 114   | 15.0                     | 734                   | 147  | 100 | 122 | 0.82 | 433 |
| MN B              | 16.0                    | 607                  | 126   | 13.9                     | 867                   | 156  | 88  | 134 | 0.66 | 404 |
|                   |                         |                      |       |                          |                       |      |     |     |      |     |
| 2022 Avg          | 15.7                    | 586                  | 116   | 14.8                     | 761                   | 149  | 98  | 124 | 0.78 | 427 |
| 2021 Avg          | 17.7                    | 607                  | 132   | 13.7                     | 1117                  | 200  | 86  | 125 | 0.69 | 395 |

#### Table 7: Baking data

| Crop Growing Area | Absorption | Dough Handling | Loaf Volume | Grain & Texture | Crumb Color | Crust Color | Symmetry |
|-------------------|------------|----------------|-------------|-----------------|-------------|-------------|----------|
| MN A              | 67.0       | 9.0            | 900         | 8.0             | 8.0         | 10.0        | 8.0      |
| MN B              | 66.1       | 9.0            | 960         | 7.0             | 8.0         | 10.0        | 7.0      |
|                   |            |                |             |                 |             |             |          |
| 2022 Avg          | 66.8       | 9.0            | 912         | 7.8             | 8.0         | 10.0        | 7.8      |
| 2021 Avg          | 65.3       | 9.0            | 860         | 7.4             | 8.0         | 9.0         | 7.8      |

Continued on next page  $\rightarrow$ 

#### Application/Use:

This project is one of the most effective ways of marketing Minnesota grown HRS wheat. It helps to improve and maintain HRS wheat sales in both domestic and overseas markets. Quality analysis results are published immediately in HRS Regional Quality Report and US Wheat Associates Crop Quality Report. Both of these reports are used as the prime tools for the marketing of US Wheat. In addition, the project principal investigator Dr Shahidul Islam presented the quality analysis results to a number of international trade teams and milling companies from all over the world who are the major importers of U.S. hard red spring wheat. Also, the representatives of U.S. Wheat Associates have been presenting the quality analysis results to national and international buyers.

#### **Materials and Methods:**

**SAMPLE COLLECTION** – Each sample contained approximately 2 to 3 pounds of wheat, stored in sealed, moisture-proof plastic bags.

**MOISTURE** – Official USDA procedure using Dickey-John Moisture Meter.

**GRADE** – Official United States Standards for Grain, as determined by a licensed grain inspector. North Dakota Grain Inspection Service, Fargo, ND, provided grades for composite wheat samples representing each crop reporting area.

**VITREOUS KERNELS** – Approximate percentage of kernels having vitreous endosperm.

DOCKAGE – Official USDA procedure. All matter other than wheat which can be removed readily from a test portion of the original sample by use of an approved device (Carter Dockage Tester). Dockage may also include underdeveloped, shriveled and small pieces Of wheat kernels removed in properly separating the material other than wheat and which cannot be recovered by properly rescreening or recleaning. **TEST WEIGHT** – American Association of Cereal Chemists International (AACCI) Method 55-10. Measured as pounds per bushel (lb/bu), kilograms per hectoliter (kg/hl) = (lbs/bu X 1.292) + 1.419. \*Approved Methods of the AACCI Approved Methods (11th Edition), St. Paul, MN.

THOUSAND KERNEL WEIGHT – Based on 10 gram sample of cleaned wheat (free of foreign material and broken kernels) counted by electronic seed counter. KERNEL SIZE DISTRIBUTION – Percentages of the size of kernels (large, medium, small) were determined using a wheat sizer equipped with the following sieve openings:

top sieve—Tyler #7 with 2.92 mm opening;

middle sieve—Tyler #9 with 2.24 mm opening; and

• bottom sieve—Tyler #12 with 1.65 mm opening. **PROTEIN** – AACCI (NIR) Method: 39.10.01 expressed on dry basis and 12 percent moisture basis. **ASH** – AACCI Method 08.01, expressed on a 14 percent moisture basis.

**DON** – Analysis was done on ground wheat using a gas chromatograph with an electron capture detector as described in J. Assoc. Official Anal. Chem 79,472 (1996) **FALLING NUMBER** – AACCI Method 56.81.04; units of seconds (14 percent moisture basis).

**SEDIMENTATION** – AACCI Method 56.61.01, expressed in centimeters.

**FLOUR EXTRACTION** – Samples are cleaned and tempered according to AACCI 26-01.02. The milling laboratory is controlled at 68 percent relative humidity and 72°F to 74°F. Milling is performed on a Buhler laboratory mill (Type MLU-202). Straight grade flour (of all six flour streams) is blended and reported as "flour extraction."The blended flour is rebolted through an 84 SS sieve. All mill settings are optimized to achieve maximum laboratory mill flour extraction with standardized ash content.

**ASH** – AACCI Method 08.01, expressed on a 14 percent moisture basis.

**PROTEIN** – AACCI Method 39.10.01 (NIR Method), expressed on a 14 percent moisture basis.

WET GLUTEN – AACCI Method 38.12.02, expressed on a 14 percent moisture basis determined with the glutomatic instrument.

**GLUTEN INDEX** – AACCI Method 38.12.02, determined with the glutomatic instrument as an indication of gluten strength.

FLOUR FALLING NUMBER – AACCI Method 56.81.03, units of seconds. Determination is performed on 7.0 g of Buhler milled flour (14 percent moisture basis). AMYLOGRAM – (65 g) AACCI Method 22.10.01, modified as follows: 65 g of flour (14 percent moisture basis) are slurried in 450 ml distilled water, paddle stirrers are used with the Brabender Amylograph. Peak viscosity reported in Brabender units (B.U.), on a 14 percent moisture basis.

**STARCH DAMAGE** – AACCI Method 76.31.01. Amperometric method using SDmatic.

**SOLVENT RETENTION CAPACITY (SRC)** – AACCI 56-11.02, expressed on a 14 percent moisture basis. SRC is used to predict commercial baking performance. Flour is shaken with excess of four types of solvent, to determine the amount of solvent held by the flour. The four solvents used relate to the functionality to flour components as follows: Water – Water absorption; Sucrose – Non-starch polysaccharides; Lactic Acid – Glutenins; Sodium Carbonate – Damaged Starch; Gluten Performance Index (GPI) – is a ratio of the



Figure 1: Bread volume analysis of Minnesota A and B (top left two) crop growing areas in comparison with other 16 red spring wheat crop growing areas of hard of U.S.

solvents and used as an overall performance of flour glutenins especially in relation to bread wheat flour. **PHYSICAL DOUGH PROPERTIES FARINOGRAM** – AACCI Method 54-21.02; constant flour weight method, small (50 g) mixing bowl. (Flour weight 14 percent moisture basis). Farionograph-E.

**ABSORPTION** – Amount of water required to center curve peak on the 500 Brabender unit line, expressed on 14 percent moisture basis.

**PEAK TIME** – The interval, to the nearest 0.5 min, from the first addition of water to the maximum consistency immediately prior to the first indication of weakening. Also known as dough development time.

STABILITY – The time interval, to the nearest 0.5 min, between the point where the top of the curve that first intersects the 500-BU line and the point where the top of the curve departs the 500-BU line.

MIXING TOLERANCE INDEX – The difference, in Brabender units, from the top of the curve at the peak to the top of the curve measured five minutes after the peak.

**QUALITY NUMBER** – AACCI Method 115. The length, expressed in mm, along the time axis, between the point of water addition and the point where the height in the center of the curve decreased by 30 BU compared to the height of the center of the curve at development time. Stronger flours have a higher quality number.

EXTENSOGRAM – AACCI Method 54-10.01; modified

as follows: (a) 100 grams of flour (14 percent moisture basis), 2.0 percent sodium chloride (U.S.P.) and water (equal to farinograph absorption minus 2 percent) are mixed to optimum development in a National pin dough mixer; (b) doughs are scaled to 150 grams, rounded, moulded, placed in extensigram holders, and rested for 45 minutes and 135 minutes, respectively, at 30°C and 78 percent relative humidity. The dough is then stretched as described in the procedure referenced above. For conversion purposes, 500 grams equals 400 B.U.

EXTENSIBILITY – Total length of the curve at the base line in centimeters.

**RESISTANCE** – Maximum curve height, reported in Brabender units (B.U.).

AREA – The area under the curve is measured and reported in square centimeters.

**ALVEOGRAPH** – AACCI Method 54.30.02. Alveolab is used to measure dough extensibility and resistance to extension.

**"P"** – Maximal overpressure; related to dough's resistance to deformation.

"L" – Dough extensibility.

**"W"** – The "work" associated with dough deformation. **BAKING PROCEDURE** – AACCI Method 10-09.01, modified as follows: (a) fungal amylase (SKB 15) replacing malt dry powder, (b) Instant dry yeast (1 percent) in lieu of compressed yeast, (c) 5 to 10 ppm

Continued on next page 🔶

ammonium phosphate, where added oxidants are required, (d) 2 percent shortening added. Doughs are mechanically punched using 6-inch rolls, and mechanically moulded using a National Laboratory Test moulder. Baking is accomplished in "Shogren-type" pans.

**BAKING ABSORPTION** – Water required for optimum dough baking performance, expressed as a percent of flour weight on a 14 percent moisturebasis.

**DOUGH CHARACTER** – Handling conversion assessed at panning on a scale of 1 to 10 with higher scores preferred.

**LOAF VOLUME** – Rapeseed displacement measurement made 30 minutes after bread is removed from the oven.

**CRUMB GRAIN AND TEXTURE** –Visual comparison to standard using a constant illumination source. Scale of 1 to 10, the higher scores preferred.

**CRUMB COLOR** – Visual comparison with a standard using a constant illumination source on a scale of 1 to 10, the higher scores preferred.

**CRUST COLOR** –Visual comparison with a standard using a constant illumination source on a scale of 1 to 10, the higher scores preferred.

**SYMMETRY** –Visual comparison with a standard using a constant illumination source on a scale of 1 to 10, the higher scores preferred.

# Economic Benefit to a Typical 500 Acre Wheat Enterprise:

This project successfully contributed towards market development of Hard Red Spring (HRS) wheat grown in Minnesota. Wheat quality is recognized as the set of attributes and characteristics contributing to the end-product quality. Meeting the requirements of food manufactures in the production of marketable end-products is crucial for the sustainability of HRS wheat market. Each of the Millers and bakers has their own perceptions and needs which varies significantly between the international export markets based on the local consumers demand. Accordingly, U. S. millers and bakers have different requirements compared to their international counterparts. On the other hand, growers define quality as the set of traits that allow maximum economic return. Thus, quality has a multiplicity of meanings, dependent upon the market situation. It is the end user who ultimately establishes value associated with a given standard of quality.

This project utilizes the latest quality testing approaches to evaluate wheat quality for various enduse applications in both domestic and international markets.

# **Related Research:**

The North Dakota State University Department of Plant Sciences has been conducting annual surveys of North Dakota grown hard red spring (HRS) wheats since the early 1960's. Surveys encompassed collection, analysis, and reporting important wheat quality attributes useful for marketing the crop. In recognition that other Northern Great Plains states produce approximately 40 percent of the HRS grown in the region, the 1980 and successive surveys have included the four northern plains states that produce 90% of the HRS wheats grown in the U.S. More recently HRS grown in the three states of Pacific North West (PNW) has been included in the survey, covering approximately 95% of total U.S. production. The range of environmental diversity, cultivars, and agronomic practices results in a range of quality attributes. Thus, expanding the survey to encompass the entire Northern Great Plains and PNW growing regions allows assessment of important marketing attributes of HRS wheat entering into the commercial market channels.

# **Recommended Future Research:**

Wheat quality analysis of every year's production is strongly recommended to be continued as one of the most effective ways of marketing Minnesota grown HRS wheat.

#### **Publications:**

- 2022 Regional Quality Report, U.S. HARD RED SPRING WHEAT (https://ndwheat.com/ uploads/7/22hrs.pdf).
- US Wheat Associates 2022 Crop Quality Report, HARD RED SPRING (https://www.uswheat.org/wpcontent/uploads/2022-USW-Crop-Quality-Report-English.pdf).



# **Continued provision of rapid end-use quality characterization services** to the University of Minnesota Wheat Breeding Program

Dr. George Amponsah Annor Department of Food Science and Nutrition University of Minnesota 1334 Eckles Avenue Saint Paul, MN, 55108

Dr. James Anderson Department of Agronomy and Plant Genetics University of Minnesota

Project Period: January – December 2022

#### **Research Question/Objectives:**

How does breeding activities by the University of Minnesota Breeding Program affect end-use Quality of Wheat?

# **Results:**

During this reporting period we analyzed about 500 wheat samples sent to us by the University of Minnesota Breeding program. These samples are remnants from New Zealand. These samples were analyzed for their protein aggregation kinetics using the Glutopeak tester (GPT). Based on the peak maximum time, torque maximum, torque before maximum, torque after maximum, startup energy, plateau energy

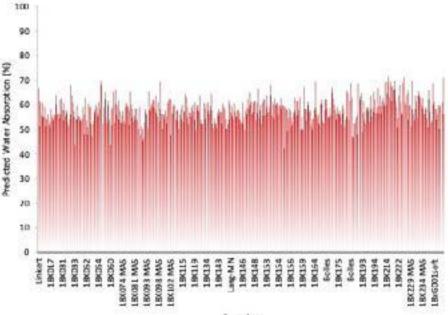



Figure 1: Calculated water absorption of wheat samples

and aggregation energy of the samples generated from the GTP, the water absorption of the samples were calculated. The calculations were done using regression equations developed earlier with funding from the MWRPC. The calculated water absorption of the samples analyzed are shown in Fig 1. The water absorption of the samples ranged from 42% for 18X155 variety to 71% for 17x239b-34, 18X228 MAS and 18X215 varieties. Linkert that was used a check sample had a predicted water absorption of 67%. The mean water absorption of the 500 samples analyzed was 58%. The ability to calculate these water absorptions using the GPT is very important in screening large amounts of samples at a very early stage of the breeding process.

# **Application/Use:**

These calculated water absorptions, along with grain protein and test weight data are the only end-use quality data the breeding program will have to help decide which of these entries will be advanced for yield trials in 2022.

#### Materials and Methods:

500 wheat samples (2022 PY remnant (from NZ) were milled into flour and their protein aggregation kinetics determined using the Brabender Gluten

Peak tester. The samples also included some checks as well.

#### Economic Benefit to a Typical 500 Acre Wheat Enterprise:

Results from this study enables the University of Minnesota Wheat breeding program to incorporate selection for good end-use quality earlier in the breeding efforts, thus avoiding the continued testing poor quality lines. The results of this research will be used to develop models that can be used to select for varieties with end-use quality parameters that are valued by our hard-red spring wheat customers. Such varieties will help to maintain the price premium of hard red spring wheat.

s11

# A novel high-throughput phenotyping pipeline to deliver more productive and stress resilient Minnesota wheat varieties

Walid Sadok, Daniel M Monnens, James A Anderson

Project Period: January 1, 2022 – December 31, 2022

# **Research Question/Objectives:**

By capturing light, nitrogen and other nutrient resources from the roots, wheat canopies are the engine that fuels reproductive growth and therefore grain yields. While a highly productive and healthy canopy is a very desirable trait for a breeder, a challenge is that such canopies are nearly impossible to detect with the naked eye, which is not equipped to detect certain wavelengths that varieties emit when they are under-performing or stressed. For a breeding program, this challenge has to be addressed to enable rapid screening of hundreds if not thousands of breeding lines. To address this problem, we are developing a drone-based remote-sensing technology that is based on thermal imaging which is being tested to support the U of M wheat breeding program. This method differentiates between productive and underperforming canopies based on their thermal 'signatures'.

While there are existing drone-based approaches to monitor crops, our method is unique as it relies on advanced thermal imaging technology coupled with energy balance modeling, and informed by physiologybased ground truthing techniques. This combination of physiology-based techniques and remote-sensing methods ensures that differences in thermal images among genotypes actually captures differences in cultivar physiology rather than differences due to weather changes. This distinction is critical to any breeding program, because traits that are 'masked' by the environment will tend to have low heritability and are more difficult to genetically improve.

The main objective of our research was to deploy, test and validate our technology on a large population of 468 breeding lines (plus 5 checks) that are part of the U of M wheat Preliminary Yield Trials (PYT). In the first year, we have successfully deployed this technology and were able to use it to identify superior breeding lines that exhibited better yields under the droughty conditions of the 2021 summer. Our specific goals for this second year were to i) finalize our image processing pipeline and ii) replicate the field-based experiment in a second year.

# **Results:**

Yield results from this year's PYTs are plotted in Figure 1. The preliminary results indicate that there is a large variability in yields, with 45% of breeding lines matching or out-yielding the best performing check. In this trial, the best performing breeding line out-performed the best check by nearly 24 bu/a, a performance higher than last year's, where the best breeding line outyielded the best check by 16 bu/a.

The completed image analysis of last year's yield trial conducted on all breeding lines revealed a statistically significant and negative association between canopy warming and yield. That is, breeding lines with cooler canopies -as exemplified on Figure 2- tended to out-yield those with warmer ones. While needing confirmation based on this year's trial, this promising result shows that selecting for genotypes with cooler canopies is a promising breeding target.

# **Application/Use:**

This research aims to develop a remote-sensing technology that enables rapid screening of breeding lines for canopy temperature, a trait directly related to yield performance. This technology is expected to support the U of M breeding program by making it possible for the breeder to more rapidly screen a larger number of breeding lines and identify promising ones at lower costs. Additionally, this technology could work in farmers' fields, potentially enabling them to monitor in real time the health status of their crop.

# **Materials and Methods:**

The experimental design was an augmented incomplete block design with 5 checks in each block (14 blocks). A total of 468 genotypes plus 5 checks were planted in (4.5 ft x 8 ft) yield plots at the U of M St Paul campus on 05/05 and harvested on 08/04 and 08/05. After planting, aerial thermal images were collected over 14 flights 1-2 times per week from [06/01] (tillering) to [08/01] (physiological maturity) with a thermal camera (Vue Pro R 640) mounted on an unmanned aerial system (UAS; Inspire 2, DJI) using a specialized gimbal (VuIR Tab HD gimbal). Flights always took place on sunny days around solar noon, i.e., between 13:00 and 13:30 hours. Along with the thermal images, RGB (Red-Green-Blue) images were collected using the drone RGB camera and gimbal (Zenmuse X5S, DJI). These RGB images were needed to align with the thermal images to differentiate soil from crop temperature and estimate the change in canopy cover over time, and to obtain an estimation of plant height.

To ensure that the remote-sensing approach effectively captures canopy temperature, we deployed groundtruthing temperature sensors (thermocouples) which were installed physically on plants so that we have an estimate of temperature as experienced by the plants. At flag leaf appearance, a total of 24 T-type thermocouples were installed throughout the trial in the flag leaves, with one mounted on a stick to measure air temperature at canopy height.

# Economic Benefit to a Typical 500 Acre Wheat Enterprise:

The ability to deliver more productive and resilient varieties for the farmer depends on new technologies such as the one being developed in the proposal. By being able to rapidly screen breeding lines for their canopy health and performance under normal and stressful conditions, this new technology will support and strengthen the ability of the U of M wheat breeding program to deliver more rapidly better yielding varieties to growers. The proposal directly aims at increasing the yield potential, and therefore the profitability of the crop for the farmer.

# **Related Research:**

This research is directly linked to the U of M wheat breeding program. Anderson and Sadok have recently received federal funding (USDA) for a graduate who would participate in UAV-based data capture activities.

In addition, the technology being developed has been already successfully tested on other small grain crops such as oats (Lopez et al. 2022). This research directly connects to Dr. Sadok's international research program which aims to help breeders develop wheat cultivars equipped with canopy traits that maximize yield gains under different water availability regimes in the Middle-East and Australia (Schoppach et al. 2017; Sadok et al. 2019; Tamang et al. 2019; Sadok and Schoppach 2019; Schoppach et al. 2020; Monnens and Sadok 2020). In the future, we expect that this work will benefit efforts to enhance resistance not only to weather stressors (drought, heat, etc) but also to pathogens such as rusts and FHB.

# **Recommended Future Research:**

Future research will focus on further developing the data analytics pipeline with the goal of enabling the detection of genetic loci associated with desirable canopy temperature traits. These loci will be evaluated against genetic loci that we detected in our research on wheat canopy conductance, which we recently published (Tamang et al. 2022). Favorable alleles at these genetic loci will be integrated in the U of M breeding pipeline and pyramided with other desirable genes to improve the yield potential of the next generation of varieties that will be released by the breeding program.

# **Publications:**

- Lopez, J.R., Tamang, B.G., Monnens, D.M., Smith, K.P. & Sadok, W. (2022). Canopy cooling traits associated with yield performance in heat-stressed oat. European Journal of Agronomy 139, 126555.
- Monnens, D.M., & Sadok, W. (2020). Whole plant hydraulics, water saving, and drought tolerance: a triptych for crop resilience in a drier world. Annual Plant Reviews, 3(4), 661-698.
- Sadok, W., Schoppach, R., Ghanem, M. E., Zucca, C., & Sinclair, T. R. (2019). Wheat drought-tolerance to enhance food security in Tunisia, birthplace of the Arab Spring. European Journal of Agronomy, 107, 1-9.
- Schoppach, R., Fleury, D., Sinclair, T. R., & Sadok, W. (2017). Transpiration sensitivity to evaporative demand across 120 years of breeding of australian wheat cultivars. Journal of Agronomy and Crop Science, 203(3), 219-226.
- Tamang, B. G., Schoppach, R., Monnens, D., Steffenson, B. J., Anderson, J. A., & Sadok, W. (2019). Variability in temperature-independent transpiration responses to evaporative demand correlate with nighttime water use and its circadian control across diverse wheat populations. Planta, 250, 115-127.
- Tamang, B. G., Monnens, D., Steffenson, B. J., Anderson, J. A., & Sadok, W. (2022). The genetic basis of transpiration sensitivity to vapor pressure deficit in wheat. Physiologia Plantarum, 174 (5) e13572.





*Figure 1. Yield performance of the 468 breeding lines in the 2022 PYT conducted at the St. Paul campus of the U of M. Breeding lines are ranked from the highest to the lowest-yielding. Due to the lack of space, only a fraction of genotype names is indicated.* 

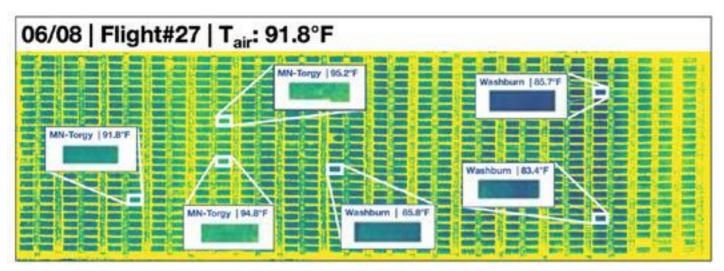



Figure 2. A composite color-coded thermal image showing consistent differences in canopy temperature between two check cultivars, MN-Torgy and MN-Washburn, measured on June 8th 2021 under hot and droughty conditions. Cultivar MN-Washburn consistently exhibited a cooler canopy (dark blue plots, compare to green-yellow plots) indicating a better ability to protect itself from excessive heat stress. The image spans the entire yield trial.

# Evaluating the impact of drain spacing and fungicide seed treatment on common root rot and Fusarium crown rot in wheat

Ashok Chanda, Dept. of Plant Pathology & Northwest Research and Outreach Center, University of Minnesota; Jochum Wiersma, Dept. of Agronomy and Plant Genetics & Northwest Research and Outreach Center, University of Minnesota; Jeffrey Strock, Dept. of Soil, Water & Climate & Southwest Research and Outreach Center, University of Minnesota; Lindsay Pease, Dept. of Soil, Water & Climate Northwest Research and Outreach Center & University of Minnesota

Project Period: January 01, 2022 – December 31, 2022

#### **Research Question/Objectives:**

The objectives of this research were to evaluate the impact of tile drain spacing and fungicide seed treatments on 1) stand establishment, 2) relative incidence and severity of Fusarium crown rot (FCR) and common root rot (CRR), and 3) grain yield of wheat.

#### **Results:**

In 2022, the Northwest Research and Outreach Center (NWROC), Crookston, MN, recorded a total rainfall of 5.82 in. and 4.73 in. for April and May, much greater than the 10-year averages of 1.57 in. and 2.49 in., respectively. The wet conditions early in the year resulted in a delayed planting date; moreover, the rest of the growing season was slightly drier than the 10year average, with only a few rainfall events occurring in June, July, and August. Additionally, the beginning of June was slightly cooler than average, but temperatures returned to average or slightly above average for the rest of June, July, and August. Plant stands averaged 1.34 million plants per acre; there were no significant (P < 0.05) differences among treatments. There were significant differences for canopy coverage estimates. On June 7, seed treated with Stamina 4F had a canopy coverage of 30%, greater than the 28.6% of the non-treated seed. Seed treated with Stamina F4 continued to have a greater canopy coverage than the non-treated seed for the remaining evaluation dates; however, differences were not statistically significant (Figure 1). Regarding drainage spacing, significant differences were present for all three evaluation dates. Initially, on June 7, the 15-ft spacing resulted in the highest canopy coverage, and the lowest was the 25-ft and 40-ft spacing. By June 22, the 40-ft spacing was statistically lower than all other drain spacings (Figure 2). Root rot incidence and severity have yet to be evaluated.

#### Application and Use:

Both excess and limited soil moisture can impact root rot diseases in wheat. Dry soil conditions can favor development of CRR, caused by Bipolaris sorokiniana under cooler soil conditions, or FCR, caused by Fusarium spp. under warmer soil conditions. Dry conditions during the latter part of the growing season can aggravate FCR. Use of appropriate fungicide seed treatment under variable soil moisture conditions under artificial inoculation will enable us to understand the benefit of seed treatments for improving plant health and preserve yield.

Continued on next page -

Table 1. Effect of fungicide seed treatments and drain tile spacing on stand establishment, growth progress, grain moisture, and yield of wheat in a field trial infested with *C. sativus* and *F. graminearum* at the University of Minnesota, Northwest Research and Outreach Center, Crookston, MN, sown on May 17, 2022.

| Seed Treatment and<br>Drain Spacing                                                                                             | Plant Stand<br>(x 1,000,000) <sup>z</sup>                                                                                  | AUGPS <sup>y</sup>                                            | Moisture (%)                                                 | Grain Yield<br>(bu/A) <sup>x</sup>                             |  |
|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------|--|
| Nontreated                                                                                                                      |                                                                                                                            |                                                               |                                                              |                                                                |  |
| 15 feet                                                                                                                         | 1.30                                                                                                                       | 1411                                                          | 11.9                                                         | 80.9                                                           |  |
| 25 feet                                                                                                                         | 1.36                                                                                                                       | 1307                                                          | 11.9                                                         | 80.3                                                           |  |
| 40 feet                                                                                                                         | 1.22                                                                                                                       | 1200                                                          | 12.4                                                         | 84.5                                                           |  |
| 60 feet                                                                                                                         | 1.43                                                                                                                       | 1365                                                          | 11.9                                                         | 78.3                                                           |  |
| Non-drained                                                                                                                     | 1.42                                                                                                                       | 1365                                                          | 12.1                                                         | 83.7                                                           |  |
| Stamina F4                                                                                                                      |                                                                                                                            |                                                               |                                                              |                                                                |  |
| 15 feet                                                                                                                         | 1.28                                                                                                                       | 1481                                                          | 12.1                                                         | 79.3                                                           |  |
| 25 feet                                                                                                                         | 1.27                                                                                                                       | 1342                                                          | 12.1                                                         | 78.9                                                           |  |
| 40 feet                                                                                                                         | 1.28                                                                                                                       | 1210                                                          | 12.8                                                         | 84.2                                                           |  |
| 60 feet                                                                                                                         | 1.40                                                                                                                       | 1430                                                          | 12.2                                                         | 79.5                                                           |  |
| Non-drained                                                                                                                     | 1.41                                                                                                                       | 1437                                                          | 12.2                                                         | 84.4                                                           |  |
| HSD <sup>w</sup>                                                                                                                | NS                                                                                                                         | NS                                                            | NS                                                           | NS                                                             |  |
| <i>P</i> -value                                                                                                                 | 0.8590                                                                                                                     | 0.7934                                                        | 0.3264                                                       | 0.9261                                                         |  |
|                                                                                                                                 |                                                                                                                            |                                                               |                                                              |                                                                |  |
| Seed Treatment (Verti<br>Nontreated                                                                                             | 1.35                                                                                                                       | 1330                                                          | 12.1                                                         | 81.5                                                           |  |
| Nontreated<br>Stamina 4F                                                                                                        | 1.35<br>1.33                                                                                                               | 1380                                                          | 12.3                                                         | 81.3                                                           |  |
| Nontreated                                                                                                                      | 1.35                                                                                                                       |                                                               |                                                              |                                                                |  |
| Nontreated<br>Stamina 4F<br>HSD<br>P- value<br>Drain Spacing (Horizo                                                            | 1.35<br>1.33<br>NS<br>0.6633                                                                                               | 1380<br>NS<br>0.1155                                          | 12.3<br>NS<br>0.7119                                         | 81.3<br>NS<br>0.8670                                           |  |
| Nontreated<br>Stamina 4F<br>HSD<br>P- value                                                                                     | 1.35<br>1.33<br>NS<br>0.6633                                                                                               | 1380<br>NS                                                    | 12.3<br>NS                                                   | 81.3<br>NS<br>0.8670<br>80.1 ab                                |  |
| Nontreated<br>Stamina 4F<br>HSD<br>P- value<br>Drain Spacing (Horizo                                                            | 1.35<br>1.33<br>NS<br>0.6633<br>ontal factor) <sup>u</sup>                                                                 | 1380<br>NS<br>0.1155                                          | 12.3<br>NS<br>0.7119                                         | 81.3<br>NS<br>0.8670                                           |  |
| Nontreated<br>Stamina 4F<br>HSD<br>P- value<br>Drain Spacing (Horizo<br>15 feet                                                 | 1.35<br>1.33<br>NS<br>0.6633<br>0.6633<br>0.6633                                                                           | 1380<br>NS<br>0.1155<br>1446 a                                | 12.3<br>NS<br>0.7119<br>12.0 b                               | 81.3<br>NS<br>0.8670<br>80.1 ab                                |  |
| Nontreated<br>Stamina 4F<br>HSD<br><i>P</i> - value<br><b>Drain Spacing (Horizo</b><br>15 feet<br>25 feet                       | 1.35         1.33         NS         0.6633                                                                                | 1380<br>NS<br>0.1155<br>1446 a<br>1325 ab                     | 12.3<br>NS<br>0.7119<br>12.0 b<br>12.0 b                     | 81.3<br>NS<br>0.8670<br>80.1 ab<br>79.6 ab                     |  |
| Nontreated<br>Stamina 4F<br>HSD<br><i>P</i> - value<br><b>Drain Spacing (Horizo</b><br>15 feet<br>25 feet<br>40 feet            | 1.35         1.33         NS         0.6633 <b>ontal factor)</b> <sup>u</sup> 1.29         1.31         1.25               | 1380<br>NS<br>0.1155<br>1446 a<br>1325 ab<br>1205 b           | 12.3<br>NS<br>0.7119<br>12.0 b<br>12.0 b<br>12.6 a           | 81.3<br>NS<br>0.8670<br>80.1 ab<br>79.6 ab<br>84.4 a           |  |
| Nontreated<br>Stamina 4F<br>HSD<br><i>P</i> - value<br><b>Drain Spacing (Horizo</b><br>15 feet<br>25 feet<br>40 feet<br>60 feet | 1.35         1.33         NS         0.6633         ontal factor) <sup>u</sup> 1.29         1.31         1.25         1.42 | 1380<br>NS<br>0.1155<br>1446 a<br>1325 ab<br>1205 b<br>1398 a | 12.3<br>NS<br>0.7119<br>12.0 b<br>12.0 b<br>12.6 a<br>12.1 b | 81.3<br>NS<br>0.8670<br>80.1 ab<br>79.6 ab<br>84.4 a<br>78.9 b |  |

<sup>y</sup> Area under growth progress stairs (AUGPS); mid-point combination of canopy coverage

estimates into a single value.

<sup>x</sup> Bushels per acre (bu/A) adjusted for 13.5% moisture

<sup>w</sup> For each column, numbers followed by the same letter are not significantly different according to Tukey's honest significant difference (HSD); NS = not significantly different

<sup>v</sup> Values represent mean of 30 plots (6 replicates across 5 drain spacing treatments)

<sup>u</sup> Values represent mean of 12 plots (6 replicates across 2 fungicide seed treatments)

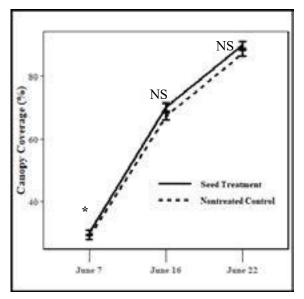



Figure 1. Canopy coverage estimates of wheat h a seed treatment (Stamina F4 [4.6 fl cwt]) compared to nontreated seed sown May 17 at the University of Minnesota, VROC, Crookston, MN. There were nificant (P = 0.014) differences among

significant.

#### **Materials and Methods:**

The trial was established at the University of Minnesota NWROC, Crookston, MN, on a Hegne silty clay loam, classified as poorly drained soil. The research plot area, established in 2001, consists of a combination of non-drained and drained experimental units. Subsurface drainage is installed at a depth of about 40 inches. The site consists of five drain spacings: 15, 25, 40, and 60 ft. apart and a control which is undrained, representing drainage intensities (water removal rates) of 0.25, 0.50, and 0.75 in/d.

Field plots were fertilized for optimal yield. Prior to planting, soil was infested with Fusarium graminearum on whole corn at 12.5 kg/A and Cochliobolus sativus (syn. Bipolaris sorokiniana) on whole barley at 9.5 kg/A by hand-broadcasting in plots and incorporated with a Rau seedbed finisher. Treatments were arranged in a randomized strip-plot design with 6 replicates for each drain spacing x treatment combination.

The trial was sown in 10-row plots (5.5-ft wide x 600ft long) on May 17 at a seeding rate of 38 seeds per square foot with the 'Torgy' wheat variety. The seeding rate was increased to account for late planting. Seed was treated with Stamina F4 Cereals (Fluxapyroxad + Pyraclostrobin + Triticonazole + Metalaxyl) at a rate of 4.6 fl oz/cwt. The nontreated control did not include

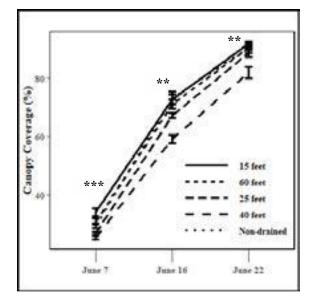



Figure 2. Canopy coverage estimates of wheat sown on a plot area consisting of non-drained and drained areas; drainage installed with 15-, 25-, 40-, and 60-foot spacings. Plots were planted May 17 at the University of Minnesota, NWROC, Crookston, MN. There

drain spacing on June 7, June 16, and June 22.

any seed treatment and was planted as bare seed. Stand counts were done on June 2, 16 days after planting (DAP) by counting the number of plants within a 3-ft section in the center four rows of each plot. Canopy coverage was estimated on June 7 (21 DAP), June 16 (30 DAP), and June 22 (36 DAP) by analyzing digital photographs with the open-source software Foliage (v 1.0, Patrignani, 2020). Canopy coverage estimates were used to calculate plant growth progress (area under growth progress stairs [AUGPS]). Plants were collected (n=40) from each plot on August 8 and stored at -20°C for further evaluation of disease incidence and severity.

Each plot was harvested mechanically on August 23. Data were collected for moisture, test weight, and yield during harvest with a calibrated Wintersteiger plot combine. Statistical analysis was conducted in R (v 4.2.0, R Core Team 2022) with the package agricolae (v 1.3-5). The strip.plot function was used for the analysis of a split-plot design, which is divided into three parts: the vertical-factor analysis, the horizontalfactor analysis, and the interaction analysis. Tukey's honest significant difference (HSD) was used for post hoc analysis at a 0.05 level of significance with the respective error terms. **Accelerated Breeding for Resistance to Fusarium Head Blight** 

#### Karl D. Glover

Project Period: January 1, 2022 – December 31, 2022

#### **Research Question/Objectives:**

Complete resistance to Fusarium Head Blight (FHB) is unavailable, yet genetic variability for resistance is well documented. Steady progress toward increasing resistance levels has been demonstrated by breeding programs through implementation of largely repeatable FHB screening procedures. Breeding programs must sustain efforts to simultaneously select resistant materials with desirable agronomic characteristics. The objective of this project is to use traditional plant breeding and selection techniques to develop hard red spring wheat germplasm and cultivars that possess agronomic characteristics worthy of release in addition to acceptable levels of FHB resistance.

#### **Results:**

Entries retained in the advanced yield trial (AYT) are generally at least moderately resistant to FHB. Those that do not perform adequately are discarded after the first year of AYT observation. Results of the 2022 AYT are presented in Table 1. Thirty-seven experimental breeding lines were tested along with eleven check cultivars during the 2022 growing season. Of the thirty-seven experimental lines, sixteen had FHB disease index (DIS) values that were lower than the test average. Among these entries, six produced more grain than average. Among the six, test weight of four entries was higher than average, and protein content of two (SD5087 and SD5090) were also greater than average. Although protein content of SD4843 was less than average, it will likely be released in November 2022. Certified seed production will take place during the 2023 growing season.

#### **Application/Use:**

With the progression of time, increases in FHB resistance levels should help to prevent devastating loses to growers caused by severe FHB outbreaks.

#### **Materials and Methods:**

Focused efforts to increase resistance began within this program after the 1993 FHB epidemic in the spring wheat production region. Both mist-irrigated greenhouse and field screening nurseries were established, and disease evaluation methods were developed. Breeding materials are evaluated for FHB resistance using three generations per year: two in the greenhouse and one in the field. We have the capacity to screen as many as 4,500 individual hills in the greenhouse (over two winter seasons). We can also have as many as 4 acres in the field under mistirrigation. Both the field and greenhouse nurseries are inoculated with grain spawn (corn that is infested with the causal fungus) and spore suspensions. Mistirrigation is used to provide a favorable environment for infection. Approximately 50 percent of the experimental populations possess Fhb1 as a source of resistance. Most of what remains are crosses with various "field resistant" advanced breeding lines.

Experimental materials are advanced through the program in the following fashion:

| Year 1FieldYear 1Fall greenhouseYear 1Spring greenhouseYear 2FieldYear 2Off-season NurseryYear 3FieldYear 4FieldYear 5Field | Space-planted $F_2$ populations<br>$F_{2:3}$ hills<br>$F_{3:4}$ hills<br>$F_{4:5}$ progeny rows<br>$F_{5:6}$ progeny rows<br>$F_{5:7}$ Yield Trials (1 replication, 2 locations)<br>$F_{5:8}$ Yield Trials (2 replications, 5 locations)<br>Advanced Yield Trials (3 reps, 10 locations) |
|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

 $F_2$  populations are planted in the field and individual plants are selected. These are advanced to the fall greenhouse where seed from each plant is sown as individual  $F_{2:3}$  hills and evaluated for FHB resistance. Four plants from each of the top 25% of the hills are advanced to the spring greenhouse. They are sown as individual  $F_{3:4}$  hills and evaluated for FHB resistance. Those with FHB resistance nearly equal to or better than 'Brick' are then advanced to the mist-irrigated field nursery as  $F_{4:5}$  progeny rows. They are evaluated again for resistance and general agronomic performance. Plants are selected within the superior rows and sent to New Zealand as  $F_{5:6}$  progeny rows for seed increase. A portion of seed from each selected plant is also grown in the fall greenhouse to confirm its resistance.

If the FHB resistance of an  $F_{5:6}$  line is confirmed, then the respective progeny row is harvested in New Zealand. In the following South Dakota field season, selected lines are tested in a two replication, multi-location yield trial. Those that have agronomic performance and yield similar to current cultivars are included in more advanced, multi-location, replicated yield trials the following year. In year 5, lines advanced through this portion of the program are included in the AYT along with entries from the traditional portion of the program. Performance data with respect to Disease Index, along with agronomic potential from the 2022 AYT are presented in Table 1.

# Economic Benefit to a Typical 500 Acre Wheat Enterprise:

The presence of FHB inoculum within fields and favorable weather conditions are just two factors that heavily influence whether this disease becomes problematic. Immediate economic benefits are therefore difficult to assess. When conditions become favorable for disease development, however, cultivars with elevated FHB resistance levels can help to reduce potentially serious grower losses.

# **Publications:**

Glover K. D., J. L. Kleinjan, C. Graham, S. Ali, Y. Jin, J. A. Ingemansen, E. B. Turnipseed, and L. Dykes. 2021. Registration of 'Ascend-SD' Hard Red Spring Wheat. Journal of Plant Registrations.





| ENTRY            | DIS<br>INDEX | YIELD<br>(BU/AC) | TW<br>(LB/BU) | PROTEIN<br>(%) | HEADING<br>(D > 6/1) | HEIGHT<br>(INCHES) |
|------------------|--------------|------------------|---------------|----------------|----------------------|--------------------|
| BRICK            | 10.9         | 33.9             | 62            | 16             | 27.3                 | 31.4               |
| SD4930           | 12.5         | 42.5             | 59.8          | 15.1           | 30.9                 | 30.2               |
| ASCEND-SD        | 12.6         | 42.1             | 60.9          | 16.1           | 31.3                 | 32.1               |
| SD4949           | 12.9         | 37.8             | 60.7          | 17             | 31.5                 | 32.3               |
| SD5074           | 13.1         | 34.1             | 60            | 16.7           | 30.2                 | 31.6               |
| BOOST            | 13.2         | 34.8             | 59.8          | 16.2           | 31.8                 | 31.2               |
| SD5090           | 13.5         | 40.7             | 61.6          | 16             | 30.6                 | 29.4               |
| LCS-TRIGGER      | 14.1         | 40.9             | 60.6          | 14.5           | 35.2                 | 30.9               |
| SD4925           | 14.2         | 35.4             | 61.2          | 16.6           | 27.9                 | 28.9               |
| DRIVER           | 14.3         | 40.3             | 61.9          | 15.6           | 31                   | 31.1               |
| FOREFRONT        | 14.3         | 34.9             | 61            | 15.8           | 27.5                 | 33.4               |
| SD4843           | 14.4         | 42.6             | 62            | 15.2           | 30.3                 | 30.1               |
| SY-VALDA         | 14.4         | 39.2             | 60.7          | 15.6           | 30.4                 | 28.9               |
| PREVAIL          | 14.5         | 38.8             | 60.9          | 15.2           | 29.6                 | 30                 |
| SD5080           | 14.6         | 37               | 62.6          | 15.7           | 29.8                 | 30                 |
| SD5060           | 14.7         | 36.9             | 60.5          | 15.8           | 30.2                 | 29.1               |
| SD5079           | 14.8         | 35.6             | 62.4          | 15.9           | 30.1                 | 29.9               |
| SD5087           | 14.9         | 38.9             | 61.6          | 16.3           | 29.9                 | 30.1               |
| SD4905           | 15.1         | 42               | 60.5          | 16.1           | 29.1                 | 30.2               |
| SD4985           | 15.4         | 38.4             | 61.4          | 15.8           | 30.7                 | 28.8               |
| SD5049           | 15.4         | 38               | 61.1          | 15.5           | 29.6                 | 26.8               |
| SD4944           | 15.6         | 37.5             | 59.7          | 16.3           | 33.9                 | 28.7               |
| SD5092           | 15.6         | 36.8             | 60.1          | 16.7           | 31.5                 | 31.4               |
| SD5095           | 15.6         | 37.8             | 62.2          | 15.8           | 31.8                 | 29.5               |
| SURPASS          | 15.7         | 37.2             | 60.4          | 16.1           | 28.4                 | 30.1               |
| SD5051           | 16.1         | 38.2             | 61.2          | 15.6           | 28.9                 | 28.2               |
| SD5051<br>SD5091 | 16.1         | 38.9             | 61.7          | 16.1           | 29.9                 | 29.3               |
| SD4998           | 16.3         | 39               | 60.7          | 15.7           | 31                   | 29.2               |
| SD4998<br>SD4894 | 16.4         | 38.3             | 60.9          | 16.3           | 27.9                 | 31.1               |
| SD4894<br>SD4991 | 16.4         | 38.2             | 61            | 15.8           | 28.7                 | 29                 |
| SD5059           | 16.5         | 40               | 59.5          | 15.6           | 32.3                 | 29.8               |
|                  |              |                  |               |                |                      |                    |
| SD5072           | 16.5<br>16.6 | 38.5<br>38.2     | 61.2<br>61.1  | 16<br>16.3     | 30.8                 | 30.5<br>27.8       |
| SD5043           |              |                  |               |                | 30.9                 |                    |
| SD5082           | 16.6         | 36.8             | 62.6          | 15.6           | 30.1                 | 29.4               |
| SD5040           | 16.7         | 37.4             | 61.5          | 15.8           | 28.7                 | 28.8               |
| SD5050           | 16.7         | 38.8             | 61.6          | 15.6           | 28.8                 | 27.3               |
| ADVANCE          | 16.8         | 38.2             | 61.1          | 15.3           | 31.4                 | 27.8               |
| SD4924           | 17           | 36               | 61            | 15.8           | 27.6                 | 30.2               |
| SD5031           | 17.3         | 38               | 60.2          | 16.4           | 30                   | 27.6               |
| SD5076           | 17.3         | 35.1             | 61.4          | 16.5           | 29.2                 | 30.2               |
| SD5032           | 17.4         | 39               | 60.7          | 15.8           | 29.7                 | 27.2               |
| SD5030           | 17.5         | 36.9             | 61.1          | 16             | 30.8                 | 26                 |
| SD4904           | 18           | 40               | 59.9          | 15.6           | 30.4                 | 30.1               |
| SD5033           | 18           | 38.1             | 59.8          | 16.2           | 29.8                 | 27.7               |
| SD5029           | 18.1         | 36.7             | 59.4          | 16.7           | 30.9                 | 26.4               |
| SD5037           | 19.6         | 38.7             | 60.5          | 15.7           | 32.1                 | 29                 |
| TRAVERSE         | 20.7         | 36.3             | 57.6          | 15.4           | 28.3                 | 32.4               |
| SD5028           | 20.8         | 37.7             | 58.8          | 16.2           | 31.1                 | 26.7               |
| MEAN             | 15.75        | 38.06            | 60.84         | 15.91          | 30.19                | 29.53              |
| LSD (0.05)       | 3.27         | 0.93             | 1.15          | 0.17           | 0.65                 | 0.61               |
| CV               | 18.24        | 5.09             | 1.11          | 2.13           | 2.68                 | 3.13               |

Table 1. South Dakota State University advanced yield trial spring wheat entries ranked according to FHB disease index values (lowest to highest – collected at Brookings) presented along with agronomic data obtained from three replication trials conducted at ten test environments in 2022.

Wheat Multi-Trait Predictions: A Quantitative, Genotype x Environment (GxE) Approach toSupporting Minnesota Wheat Breeding and Farmer Varietal Selections

Kevin Silverstein (PI) Yuan Chai (co-PI) James Anderson (co-PI)

Project Period: 02/01/2022 – 12/31/2023

#### **Research Question/Objectives:**

A perennial challenge faced by wheat breeders and producers is to identify and select the best performing varieties for each location. A high-yielding variety at one location during one season may not perform well at another location and/or another season, exemplifying the strong effects of Variety (Genotype) by Environment (GxE) interactions on crop performance. In this project, researchers at the UMN CFANS GEMS Informatics Center (led by Dr. Yuan Chai and Dr. Kevin Silverstein), in collaboration with breeder Dr. Jim Anderson from the Department of Agronomy and Plant Genetics, are developing a wheat trait prediction tool to intelligently combine crop performance data, genomic information, environmental conditions, and their GxE interactions to accurately predict the performance of different varieties under different environments. This tool will allow simultaneous optimization in the selection of relevant traits under different environments, including grain yield, protein content, straw strength, heading date, height, and disease resistance.

#### **Results:**

*Phenotype data from field trials:* A database of wheat grain yields for 183 varieties and experimental lines grown in one or more years and up to 15 locations per year (Figure 1) was assembled from annual performance data files maintained by the UMN wheat breeding program. At this time, we have permission from the developers to include 135 varieties/lines in this study and, subject to resolving data privacy concerns, may be able to include an additional 28 varieties. End-use quality data from these same lines, grown at 2 locations per year and produced by the USDA-ARS Hard Spring and Durum Wheat Quality Laboratory (HSDWQL) in Fargo, has also been assembled.

*MN wheat varieties genotyping results:* For the panel of selected wheat varieties, GBS (Genotyping-by-Sequencing) resulted in over 11,000 SNP markers

across the genome in each of the 128 panel lines that met stringent data quality thresholds. There was coverage across all the chromosomes. The distribution of SNP markers on each chromosome is shown in Figure 2. The underrepresentation of the D-genome is typical for wheat and was expected. The number of SNP markers obtained was about four times higher than we typically use in our prediction work, so marker coverage for genomic prediction should be excellent.

Environmental data and crop growth modeling: The wheat grain yield data from 15 trial locations and multiple years was used to select weather and soil features that were most important for yield prediction. A gridded map was produced for Minnesota showing environmental similarity of different zones with the trial sites using only the selected environmental features for comparison as shown in Figure 3. The spatially-explicit weather data was averaged over the preceding three years for more reliability as shown by Neyhart et al. (2022) to generate the environmental similarity grid. The idea is to be able to predict which of the already-tested lines would perform best in new untested locations that are similar in agroecological (i.e., soil and climate) terms to the trial sites. Further efforts to generate and test trait response models for wheat that incorporate the genetic effects, and their environmental interactions (i.e., G x E), are ongoing.

#### Application/Use:

*Faster varieties to market:* In a typical wheat breeding cycle (as illustrated in Figure 4), it takes 9 years starting from the first cross to create a commercial variety. By the time the variety is released, it is already slightly out of date due to rapid climate changes, novel pest pressures, and changing market forces. It is anticipated that our novel prediction pipeline will shave off 2 years from the breeding cycle, for a total of 7 years, which would allow growers to gain two extra growing seasons when the germplasm's design objectives will be most relevant.

#### Seeds better suited to growers' field conditions:

Currently our prediction tool is anticipated to make excellent forecasts for how well novel wheat varieties will grow at each of the breeders' test sites.

Continued on next page 🛁

To aid growers' decision making we are developing an environmental similarity zone matcher that links growers' fields to the most similar test site (according to the soil and weather characteristics of each location). At the conclusion of this funding cycle, growers will be able to determine how similar their fields are to a well-tested location, and then readily identify the bestperforming varieties at that location. The strength of the similarity of their field to the best-matched test site will help in gauging confidence in the prediction.

# **Materials and Methods:**

*Phenotyping:* Yield trial nurseries were grown as 50-80 sq. ft. plots with 3 replications per entry. Trial nurseries (up to 15 locations per year) are located across the wheat growing areas in the state of Minnesota. Spatial correction was performed within each location prior to calculating entry means.

*Genotyping:* Genotyping by sequencing (GBS) uses next-generation DNA sequence technology (Illumina) to obtain single nucleotide polymorphism (SNP) markers across the entire genome. It is a fast and costeffective method to genotype breeding populations with thousands of DNA markers that can be used in genomic selection. A panel of 128 cultivars and advanced experimental breeding lines phenotyped in yield trials in a minimum of 13 environments, and up to 138 environments, were genotyped at the University of Minnesota's Genomics Center (UMGC) using GBS. The short DNA sequence reads from each individual line were mapped to the Chinese Spring V2.1 reference genome (Zhu et al. 2021) to find the SNP markers and determine their physical positions in the genome.

*Crop growth modeling:* A coding pipeline has been designed to source weather data for each trial site and year combination from the GEMS Weather API. The soil data for each trial site was obtained by guerying the GEMS Soil API. The pipeline uses empirical planting dates and weather parameters to predict phenological stages for wheat using the BBCH growing scale. The weather parameters were summarized over four broad phenological stages- early vegetative, late vegetative, flowering, and grain fill. The relevant soil and weather environmental covariates (EC) per trait were determined using a stepwise linear regression model or a lasso regression grid search model with cross validation assuming a fixed effect for genotypes. A covariance matrix was generated for the selected environmental covariates that represents how similar or dissimilar the sites are to each other. The full model utilizes this EC matrix and a genomic similarity matrix generated from the genotyping data, to assess

the trait-performance effect of the genotypes, the environments, and their interaction on the traits of interest, as previously illustrated by Neyhart et al. (2022) for barley. We used a leave-one-location-out approach for testing prediction accuracy.

# Economic Benefit to a Typical 500 Acre Wheat Enterprise:

The spring wheat multi-trait prediction tool developed by this project will improve the cost-effectiveness of regional spring wheat breeding programs by enabling breeders to select for varieties with a higher likelihood of success for a number of commercially valuable traits. As a result, a typical 500 acre wheat enterprise in Minnesota will benefit from having earlier access to a wider selection of improved wheat varieties that are better matched to their local environmental conditions and changing market demands.

# **Related Research:**

The model we have developed requires accurate weather data, soil characteristics, and crop calendar (planting date, harvest date) information for each location (training sites and farm query sites). The University of Minnesota's GEMS Informatics Center has invested substantial effort over the past few years into developing Application Programmer Interfaces (APIs) to make accessing this data easy, for any site on the globe. Both the multi-trait prediction tool and the API data retrieval tools are subject to on-going improvement. GEMS also has in-house hardware engineers who have developed sophisticated weather and soil sensor stations within our GEMS Sensing program. 2,200 sensing stations have already been deployed at various locations throughout the world, including across all of the ROCs (Research and Outreach Centers) located throughout Minnesota. Further, we have been working on multi-regression and Machine Learning algorithms that use satellite data to make more accurate estimates of important crop performance metrics, including crop emergence date and harvest date. When this line of research is more fully developed, we could use these phenology predictions to fill in missing data from our trial records, which in turn is likely to improve the accuracy of our multi-trait predictive tool.

#### **Recommended Future Research:**

The effectiveness of our wheat multi-trait prediction tool depends on both the quantity and quality of the genotype, phenotype, and environment input data. To improve our wheat multi-trait prediction tool, future research would benefit from collecting more detailed primary data from more varieties and more locations across different environmental conditions. In addition, further funds can also be used to support the development of this tool into an application programming interface (API) to enable breeders to easily incorporate this tool into their current breeding programs.

GEMS has a development approach that creates everimproving predictive tools. To be cost-effective within the funding available for this project, we are adapting and fine tuning our core trait modeling framework that worked well for barley, and applying that to wheat. However, in a subsequent version of the tool we believe that we can offer even more value to growers by making changes to the fundamental algorithm itself. Currently, our internal environment matrix is indexed by field trial location. This works very well for breeders since they are often planting their trials at the same fixed sites. But it has less value for making predictions at new field locations. This model identifies variety x new location suitability indirectly because it requires making environmental similarity comparisons back to one of the trained locations. In a future version of this tool we plan to reconfigure the central covariance matrix (and thus the associated predictive analytic inferences that can be made) to be indexed by

Halloc Virgenee Strathpone Crocessoe Okles Pidley Fergus Falls Morris Renson Becket Lamberton Virseca

Figure 1: MN spring wheat phenotypic data trial sites. The green pixels represent wheat growing areas in 2020 and the red dots are the trial sites used by this study to source our phenotypic (i.e., trail performance) data.

environmental characteristics (e.g., temperature, soil water holding capacity, pH, soil porosity) rather than physical trial locations per se. This will require a full recalibration of our modeling framework, but such a re-tooling will allow us to directly make predictions for any farmer's field throughout Minnesota (as long as the measured value for each environmental characteristic falls within the bounds of what was observed during training the model – i.e., does not require extrapolating to extreme outliers).

#### **Reference:**

Zhu, T., Wang, L., Rimbert, H., Rodriguez, J.C., Deal, K.R., De Oliveira, R., Choulet, F., Keeble Gagnère, G., Tibbits, J., Rogers, J., Eversole, K., Appels, R., Gu, Y.Q., Mascher, M., Dvorak, J. and Luo, M. C. (2021), Optical maps refine the bread wheat Triticum aestivum cv Chinese Spring genome assembly. The Plant Journal. Accepted Author Manuscript. https://doi.org/10.1111/tpj.15289

Neyhart J.L., Silverstein K.A.T., Smith K.P. (2022), Accurate predictions of barley phenotypes using genomewide markers and environmental covariates. Crop Science. DOI: 10.1002/csc2.20782

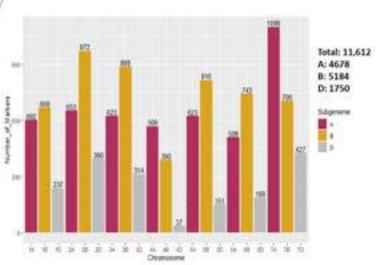



Figure 2: Number of markers by chromosome. Chromosomes are shown on the x-axis and the number of markers on the y-axis. The A-subgenome is depicted in maroon, the B-subgenome in gold, and the D-subgenome in gray. The total number of markers for the whole genome, and for each of the three subgenomes are listed to the right of the graph. Continued on next page

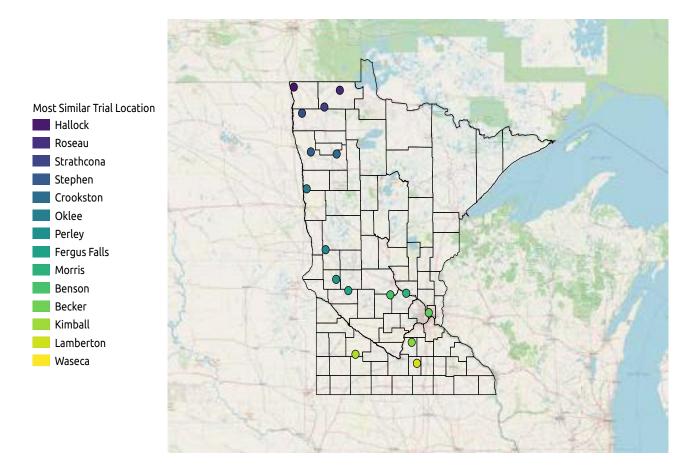



Figure 3: Environmental similarity map of Minnesota. A gridded map of Minnesota showing the environmental similarity of locations throughout the state with the trial sites used for this study. Each grid cell is 9 km2 in size and the color key for location similarity is given on the left of the map. Environmental features important for wheat yield were selected using the lasso grid search algorithm. Similarity of zones was based on Spearman's rank correlation calculation. The zones shown in this map are preliminary as we are still surveying different correlation metrics and feature selection protocol. Final procedures will be settled after conferring with our breeding team and growers.



Figure 4. Typical MN wheat variety breeding cycle. The advancements in this research project are expected to shave a year off each of the activities highlighted in red and purple. In the red activity, there are far too many lines to do a complete phenotypic scoring. However, genotyping them all is easy. And based on those genotypes, our tool can produce very accurate phenotypic predictions. In the purple activity, our phenotypic predictions will greatly speed up the selection of the final parents to pass on to the next cycle.



# **University of Minnesota Wheat Breeding Program**

#### James A. Anderson & Jochum Wiersma

Project Period: January 1, 2022 – December 31, 2022

#### **Research Question/Objectives:**

This is a continuation of the U of MN spring wheat breeding program with the objectives: 1) Develop improved varieties and germplasm combining high grain yield, disease resistance, and end-use quality; and 2) Provide performance data on wheat varieties adapted to the state of Minnesota.

#### **Results:**

During the 2021/2022 crossing cycle, 235 crosses were made. The 2022 State Variety Trial, which contained 45 released varieties, 13 University of Minnesota experimental lines, 4 experimental lines from other programs, and 3 long term checks was evaluated at 14 locations. Another 230 advanced experimental lines were evaluated in advanced yield trials at up to 10 locations and 468 lines were evaluated in preliminary yield trials at 3 locations. A total of 8,779 yield plots were harvested in 2022. Fusarium-inoculated, misted nurseries were established at Crookston and St. Paul. An inoculated leaf and stem rust nursery was conducted at St. Paul. DNA sequence information was obtained from 3,072 pre-yield trial lines and their FHB resistance and dough mixing properties were predicted based on a training set of 210 lines and their 55 parents. The predictions based on DNA



sequence information were used to help select the 468 preliminary yield trial lines from the 3,072 candidate lines, therefore avoiding more expensive and timeconsuming field-based evaluations on more than 2,000 lines with low genetic potential. Data from the yield and disease nurseries are summarized and published in Prairie Grains and the MAES's 2022 Minnesota Field Crop Variety Trials (https://varietytrials.umn.edu).

Experimental line MN15005-4 (Prosper/MN08301-6// Norden) was released as MN-Rothsay in 2022. MN-Rothsay has excellent grain yields, very good straw strength, and average grain protein. Disease resistance and baking quality are acceptable. See Table 1 for comparison of MN-Rothsay with other varieties.

|            |         |         | Gr   | Grain Yield |      |      |      | Straw | Test Wt  | Protein | Baking  |     | Leaf | Bacterial |      |
|------------|---------|---------|------|-------------|------|------|------|-------|----------|---------|---------|-----|------|-----------|------|
|            | Release | % of MN | (%   | ofme        | an)  | HD   | HT   | Str.  | (lbs/bu) | (%)     | Quality | PHS | Rust | Leaf Str. | Scab |
| Variety    | Yr.     | Acreage | 2022 | 2 Yr        | 3 Yr | d    | in.  | 1–9   | 2 yr     | 2 yr    | 1–9     | 1–9 | 1–9  | 1–9       | 1–9  |
| MN-Rothsay | 2022    | -       | 102  | 103         | 104  | 51.4 | 25.4 | 3     | 60.7     | 14.8    | 5       | 2   | 4    | 4         | 4    |
| SY Valda   | 2015    | 11.0    | 104  | 103         | 104  | 50.4 | 25.2 | 5     | 60.5     | 14.4    | 6       | 2   | 4    | 4         | 4    |
| Shelly     | 2016    | 4.0     | 103  | 103         | 103  | 50.9 | 25.7 | 5     | 60.6     | 14.4    | 5       | 1   | 5    | 6         | 4    |
| AP Murdock | 2020    | 7.6     | 103  | 98          | 102  | 48.8 | 25.0 | 5     | 60.2     | 14.5    | 5       | 1   | 3    | 4         | 7    |
| MN-Torgy   | 2020    | 21.7    | 100  | 100         | 102  | 50.7 | 26.1 | 4     | 61.0     | 15.2    | 4       | 1   | 3    | 3         | 3    |
| WB9590     | 2017    | 19.4    | 101  | 99          | 101  | 48.6 | 23.9 | 3     | 60.4     | 15.5    | 4       | 1   | 6    | 6         | 7    |
| WB9479     | 2017    | 7.9     | 97   | 95          | 96   | 48.6 | 24.7 | 3     | 60.3     | 15.9    | 2       | 1   | 6    | 6         | 7    |
| Linkert    | 2013    | 6.3     | 93   | 94          | 93   | 49.5 | 25.8 | 2     | 61.3     | 15.7    | 1       | 1   | 3    | 5         | 5    |

*Table 1. Comparison of MN-Rothsay and the seven most popular spring wheat varieties grown in MN. Entries are sorted based on grain yield (% of mean) over 42 environments since 2020. For traits scored on a 1-9 scale, 1 is best and 9 is worst.* 



# Application/Use:

Experimental lines that show improvement over currently available varieties are recommended for release. Improved germplasm is shared with other breeding programs in the region. Scientific information related to efficiency of breeding for particular criteria is presented at local, regional, national, and international meetings and published.

# **Materials and Methods:**

Approximately 300 crosses are made per year. A winter nursery is used to advance early generation material when appropriate, saving 1-2 years during the process from crossing to variety release. Early generation selection for plant height and leaf rust and stem rust resistance is practiced in nurseries in St. Paul and Crookston. Approximately 400 new lines are evaluated in preliminary yield trials at 3 locations. Advanced yield trials - containing 170-180 experimental lines – are evaluated at 10-11 locations. All yield nurseries are grown as 50-80 sq. ft. plots. Misted, inoculated Fusarium head blight nurseries are grown at Crookston and St. Paul and an inoculated leaf and stem rust nursery is grown at St. Paul. The disease nurseries involve collaboration with agronomists and pathologists at Crookston and with personnel from the Plant Pathology Department and the USDA-ARS. Genomic prediction is used at the pre-yield trial stage to predict the performance of experimental lines based on DNA sequence information of related lines. This allows us to screen a larger number of lines than we could accommodate in our field trials and can help us find the rare lines that combine all the desired traits in a high yielding line.

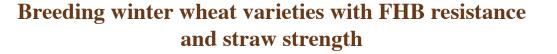
# Economic Benefit to a Typical 500 Acre Wheat Enterprise:

Choice of variety is one of the most important decisions growers make each year. The development of highyielding varieties that are resistant to the prevalent diseases and have good end-use quality are necessary to increase grower profitability. As an example, a new variety that yields 4% higher will produce 3 extra bushels/acre in a field that averages 75 bu/A. At \$8.75/ bushel that equates to more than \$13,000 in additional gross revenue for a 500-acre wheat enterprise.

#### **Related Research:**

These funds provide general support for our breeding & genetics program. Additional monetary support for breeding activities in 2022 came from the MN Small Grains Initiative via the Minnesota Agricultural Experiment Station, and the U.S. Wheat and Barley Scab Initiative via USDA-ARS.

#### **Recommended Future Research:**


This is an ongoing project and we expect to deploy drone-based phenotyping and expand our use of genomic prediction in 2022.

#### **Publications:**

Jordan, K.W., Peter J Bradbury, Z.R. Miller, M. Nyine, F. He, M. Fraser, J. Anderson, E. Mason, A. Katz, S. Pearce, A.H. Carter, S. Prather, M. Pumphrey, J. Chen, J. Cook, S. Liu, J.C. Rudd, Z. Wang, C. Chu, A.M.H. Ibrahim, J. Turkus, E. Olson, R. Nagarajan, B. Carver, L. Yan, E. Taagen, M. Sorrells, B. Ward, J. Ren, A. Akhunova, G. Bai, R. Bowden, J. Fiedler, J. Faris, J. Dubcovsky, M. Guttieri, G. Brown-Guedira, E. Buckler, J.-L. Jannink, E.D. Akhunov. 2021. Development of the Wheat Practical Haplotype Graph database as a resource for genotyping data storage and genotype imputation. G3, https://doi.org/10.1093/g3journal/jkab390 Zhang, J. A. Min, B.J. Steffenson, W.-H. Su, C.D. Hirsch, J. Anderson, J. Wei, Q. Ma, and C. Yang. 2022. Wheat-Net: An Automatic Dense Wheat Spike Segmentation Method Based on an Optimized Hybrid Task Cascade Model. Front. Plant Sci. https://doi.org/10.3389/ fpls.2022.834938

Rauf, Y., C. Lan, M. Randhawa, R.P. Singh, J. Huerta-Espino, J. Anderson. 2022. Quantitative trait loci mapping reveals the complexity of adult plant resistance to leaf rust in spring wheat 'Copio'. Crop Sci. https://doi.org/10.1002/csc2.20728 Boakye, P.G., I. Kougblenou, T. Murai, A.Y. Okyere, J. Anderson, P. Bajgain, B. Philipp, B. LaPlante, S. Schlecht, C. Vogel, M. Carlson, L. Occhino, H. Stanislawski, S.S.

Ray, and G.A. Annor. 2022. Impact of sourdough fermentation on FODMAPs and amylase-trypsin inhibitor levels in wheat dough. J. Cereal Sci. https://doi. org/10.1016/j.jcs.2022.103574



#### Sunish K. Sehgal, Gazala Ameen, Peter Sexton

Project Period: January 1, 2022- December 31, 2022 (Year 1)

#### **Research Question/Objectives:**

Winter wheat (soft wheat and hard wheat) offers several advantages over spring wheat including a 20% yield increase and fits well with cover crop rotation, conserves soil moisture, improves water quality, reduces soil erosion, and builds soil structure and soil health. Winter wheat can provide an opportunity for MN farmers to adopt a fall crop in their rotation considering the above-discussed advantages. Therefore, there is a need to develop varieties with good Fusarium head blight resistance and straw strength that are well adapted to this region. The primary objectives of the project are to enhance the FHB resistance and straw strength in soft and hard winter wheat and release improved winter wheat varieties for the region.

#### **Results:**

**Population development and Speed breeding:** In March 2022 more than 100 hard winter wheat and 40 soft white wheat crosses were performed in the first year of the new project. The F1's from these crosses were vernalized and are currently growing to develop F2 populations. The F2 plants carrying Fhb1 or Fhb6 (based on markers screening) from each cross will then be advanced using the speed breeding technique to F4 for field selection (Figure 1).

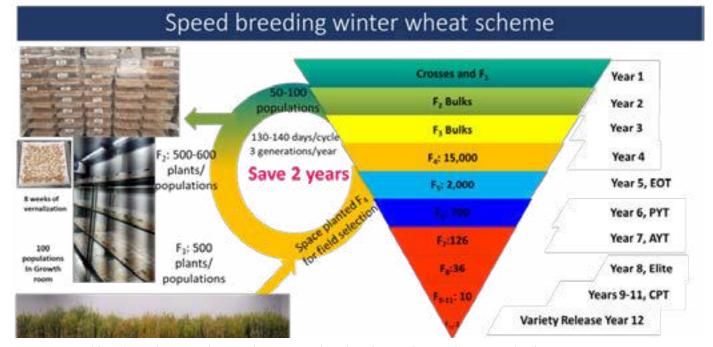



Figure 1: Speed breeding scheme implemented in winter wheat breeding to shorten the variety development time.

Continued on next page 🔶

Selections in Segregating populations: Selections in space planted 79 F4 populations were made for dwarf height, tillering capacity, earliness, and rust resistance. Of these 79 populations, about 30 populations carried Fhb1 in a homozygous or heterozygous state. On average we selected 20-30 desirable plants from each of the 79 populations and advanced them to 4-row early observation trials (EOT is individual plant short rows) for the 2023 season to get an observation of yield potential and agronomic traits (Fig.1). The selected lines from EOT will be advanced to preliminary yield trials (PYT) in 2024.

Advanced and Elite yield trials: Hard winter Wheat advanced yield trial (AYT 2022) with 126 entries and Elite yield trial (Elite 2022) with 36 entries were performed at 7 and 8 locations, respectively, across SD. In AYT, the yield ranged from 28 bu/acre at Hayes to 115 bushels/acre at Selby, SD. Superior performing entries from AYT 2022 were advanced to Elite 2023 trials including two hard white wheat experimental lines SD20D063-2W and SD20D064-3W. Both the experimental lines have an early maturity with medium-short height, good winter hardiness, and average FHB resistance.

In the elite yield trials (Elite 2022) 30 new entries were evaluated along with six check cultivars. Of the 30 entries, 19 had a lower disease index than the trial average and eight entries had above-average grain yield (Table 1). Four entries SD18B055-2, SD19B164-3, SD19B108-3, and SD18B016-5 with good FHB resistance or below average height were advanced to state-wide crop performance trials (CPT) for the 2023 growing season. Few stable and high-yielding elite lines from CPT are also entered in MN winter wheat trials.

In Soft White Wheat (SWW) advanced yield trial (2022) we evaluated 20 entries including 5 check cultivars. The

SWW trials were conducted at three locations along the I-29 corridor North Brookings, Aurora farm, and Beresford, SD. The average grain yield, test weight, and protein content were 59.1 bu/ac, 55.4 lb/bu, and 13.6 %, respectively. Drier weather in 2022 resulted in lower-than-expected test weight. Experimental line MI17W0133 toped the trials with a grain yield of 67.4 bu/acres.

GWAS of FHB resistance in SDSU germplasm: In this study, we evaluated a set of 257 breeding lines from the South Dakota State University (SDSU) breeding program to uncover the genetic basis of native FHB resistance in the US hard winter wheat. We conducted a multi-locus genome-wide association study (ML-GWAS) with 9,321 high-quality single-nucleotide polymorphisms (SNPs). A total of six distinct markertrait associations (MTAs) were identified for the FHB disease index (DIS) on five different chromosomes including 2A, 2B, 3B, 4B, and 7A. Further, eight MTAs were identified for Fusarium-damaged kernels (FDK) on six chromosomes including 3B, 5A, 6B, 6D, 7A, and 7B. Out of the 14 significant MTAs, 10 were found in the proximity of previously reported regions for FHB resistance in different wheat classes and were validated in HWW, while four MTAs represent likely novel loci for FHB resistance. Accumulation of favorable alleles of reported MTAs resulted in significantly lower mean DIS and FDK scores, demonstrating the additive effect of FHB resistance alleles.

# Application/Use:

Breeding efforts with time will result in the enhancement of FHB resistance and good straw strength in winter wheat germplasm. The improved lines will be recommended for release as varieties for production in the region. The improved germplasm will form the foundation of the next breeding cycle and will also be shared with breeding programs in the region.

|             | FHB   | Yield   | TW      | Protein | Heading | Height   | Lodging |
|-------------|-------|---------|---------|---------|---------|----------|---------|
| Entry       | Index | (bu/ac) | (lb/bu) | (%)     |         | (inches) | (0-9)   |
| REDFIELD    | 19.7  | 55.2    | 57.1    | 14.9    | 161.0   | 31.1     | 2.0     |
| SD19B089-3  | 19.7  | 54.8    | 57.5    | 14.3    | 159.9   | 33.3     | 2.4     |
| EXPEDITION  | 22.0  | 54.3    | 58.0    | 14.8    | 156.6   | 32.2     | 3.5     |
| WINNER      | 22.6  | 54.1    | 57.8    | 14.5    | 158.5   | 31.1     | 1.8     |
| SD18B055-2  | 23.2  | 56.8    | 57.9    | 14.1    | 159.2   | 31.6     | 1.9     |
| SD18D037-11 | 23.5  | 56.4    | 58.5    | 14.4    | 159.3   | 33.0     | 2.8     |
| SD19B011-2  | 25.6  | 52.4    | 57.9    | 15.1    | 158.5   | 32.5     | 2.4     |
| SD19B057-1  | 25.8  | 54.0    | 57.9    | 15.1    | 158.2   | 32.8     | 2.1     |
| SD19B051-3  | 26.7  | 54.1    | 57.3    | 15.1    | 161.3   | 31.5     | 2.2     |
| SD18B016-5  | 27.0  | 56.1    | 58.1    | 14.3    | 159.7   | 32.1     | 2.2     |
| SD19B016-1  | 27.3  | 52.3    | 57.7    | 15.2    | 159.0   | 33.0     | 2.5     |
| SD19B002-1  | 27.8  | 53.7    | 57.3    | 14.7    | 161.8   | 31.4     | 2.6     |
| SD19B136-3  | 28.0  | 55.4    | 58.5    | 14.6    | 159.3   | 33.3     | 2.5     |
| SD19B087-1  | 28.1  | 53.4    | 57.2    | 14.5    | 160.4   | 31.4     | 1.8     |
| OVERLAND    | 29.3  | 57.7    | 58.4    | 14.3    | 159.6   | 33.5     | 2.6     |
| SD18D074-11 | 29.7  | 53.7    | 57.5    | 14.6    | 162.4   | 33.6     | 2.3     |
| SD19B153-2  | 30.0  | 54.1    | 58.0    | 14.6    | 161.3   | 32.4     | 2.5     |
| SD19B176-2  | 30.0  | 55.8    | 58.0    | 14.7    | 160.6   | 31.3     | 1.9     |
| SD19B004-1  | 30.3  | 55.5    | 58.0    | 14.6    | 158.7   | 31.9     | 2.0     |
| SD19B108-3  | 30.3  | 56.6    | 58.0    | 14.2    | 159.2   | 32.3     | 2.3     |
| SD18B061-4  | 30.3  | 54.2    | 58.3    | 15.2    | 161.0   | 32.2     | 1.7     |
| SD18D042-3  | 30.5  | 52.2    | 57.2    | 14.4    | 161.3   | 32.3     | 2.9     |
| SD19C008-3  | 30.9  | 53.8    | 58.5    | 14.3    | 159.3   | 34.1     | 2.7     |
| SD18D080-2  | 31.7  | 56.0    | 58.3    | 14.5    | 159.8   | 33.4     | 2.9     |
| KELDIN      | 31.9  | 56.2    | 57.9    | 14.5    | 162.7   | 31.7     | 1.6     |
| SD18D035-6  | 32.9  | 51.7    | 57.2    | 15.0    | 159.1   | 31.4     | 2.4     |
| SD19B183-1  | 33.4  | 54.8    | 57.9    | 15.0    | 159.9   | 32.1     | 2.4     |
| SD19D133-4  | 33.4  | 54.5    | 57.1    | 14.8    | 158.4   | 32.7     | 3.1     |
| SD19B024-2  | 33.5  | 57.8    | 57.4    | 14.2    | 159.9   | 34.1     | 3.4     |
| SD18B062-12 | 33.6  | 53.7    | 57.1    | 14.8    | 161.5   | 33.0     | 2.2     |
| SD18D043-5  | 36.2  | 54.2    | 54.9    | 14.7    | 160.6   | 33.5     | 4.2     |
| SD19B162-1  | 38.0  | 53.1    | 56.7    | 14.7    | 161.5   | 33.3     | 2.3     |
| SD19B164-3  | 40.6  | 56.7    | 56.3    | 14.5    | 159.7   | 31.8     | 1.9     |
| SYMONUMENT  | 45.6  | 55.7    | 56.2    | 14.1    | 161.3   | 31.3     | 2.1     |
| SD19B020-2  | 47.7  | 53.3    | 57.8    | 15.2    | 161.3   | 33.9     | 1.8     |
| SD19B104-2  | 50.9  | 53.6    | 56.1    | 14.9    | 160.8   | 30.9     | 2.4     |
| Grand Mean  | 31.2  | 54.7    | 57.5    | 14.6    | 160.1   | 32.4     | 2.4     |
| LSD         | 5.7   | 2.7     | 0.9     | 0.3     | 0.8     | 0.9      | 0.7     |
| CV          | 23.0  | 8.1     | 3.3     | 3.7     | 0.6     | 4.6      | 32.2    |

Table 1. South Dakota State University hard winter wheat Elite yield trial (Elite) entries ranked according to FHB disease index values (lowest to highest – collected at Volga farm) presented along with agronomic data obtained from three replication trials conducted at nine test environments in 2022. The heading data is days to on Julian calendar and Lodging was rated at harvest on a scale of 0-9; 0- no lodging and 9- complete lodging.

Continued on next page 🔶

## **Materials and Methods:**

Each year we make several hundred crosses in hard winter wheat (HWW) and about 40 crosses/backcrosses in soft white winter wheat (SWW) market class. The crosses are developed for agronomic traits (grain yield, test weight, protein content, straw strength, etc), end-use quality traits, and resistance to diseases and insect pests. However, the main goal of this project is to enhance the straw strength and FHB resistance in winter wheat along with winter hardiness to develop varieties adapted to this region. The major sources of FHB resistance are native (Lyman, Everest Overland, and Emerson), Fhb1 and Fhb6 and for increasing straw strength, the focus is on semidwarf genotypes carrying Rht1b. The F1's are backcrossed or seed increased in the greenhouse and then 500 F2 plants are screened for with molecular markers (Fhb1/Fhb6) in target crosses and the selected F2 plants are advanced to the next generation as mini-bulks through speed breeding (Fig. 1) or in the field to F4 generations. The F4 population is space planted to select plants with shorter height and tillering capacity and early maturity. The selected plants are planted in short 5 ft 4-row early observation trial (EOT). The EOT entries are screened for FHB markers (for confirmation) and selected based on winter hardiness, resistance to other diseases (rust and Bacterial Leaf Streak), and agronomic traits like plant height, maturity, yield, test weight, and grain protein. The best performing breeding lines from EOT are advanced to preliminary (three locations) then to advanced yield trials (AYT) at 3 (SWW-AYT) and 7 (HWW-AYT) locations and finally, the hard winter wheat lines are advanced to elite yield trials (Elite) at 8 locations. Currently, we are evaluating 20 SWW lines in our SWW-AYT, 126 HWW in our HWW- AYT, and 36 HWW lines in our HWW-Elite trials. The AYT and Elite lines are evaluated for FHB resistance in our mist-irrigated FHB field nursery. Further, all quality parameters of the advanced and Elite lines are evaluated. GS approaches are also being evaluated in the breeding program for various traits. The 2-3 lines showing superior performance in AYT, and Elite trials are submitted to the Minnesota State Variety trials conducted by (Dr. Jared J. Goplen and Dr. Jochum J. Wiersma) at 5 locations in MN.

# Economic Benefit to a Typical 500 Acre Wheat Enterprise:

The development of winter wheat varieties adapted to Minnesota and the region can bring significant benefit to the regional producers in terms of revenue as winter wheat varieties would typically yield ~10 % more than spring wheat due to the longer growing season. This would account for additional 5 bu per acre. In addition, winter wheat on a farm would spread the producer's workload as it is planted in the fall and helps compete with weeds in a corn-soybean rotation. The fall-planted winter wheat keeps the ground covered preventing soil erosion and captures fall moisture and provides an opportunity to include cover crops in rotation. Lastly, studies have shown having wheat in crop rotation enhances yield in the following corn crop by nearly 10%.

# **Related Research:**

These funds provide general support for our breeding program to develop winter wheat varieties adapted to the region and provide value addition to the producer and meet the needs of the local milling industry. Additional funding for breeding activities comes from South Dakota Wheat Commission and U.S. Wheat and Barley Scab Initiative via USDA-ARS.

# **Publications:**

Zhang J, Gill HS, Halder J, Brar NK, Ali S, Bernardo A, Amand PS, Bai G, Turnipseed B, Sehgal SK (2022) Multilocus genome-wide association studies to characterize Fusarium head blight (FHB) resistance in hard winter wheat. Front Plant Sci 13: 946700. https://doi. org/10.3389/fpls.2022.946700

Zhang J, Gill HS, Brar NK, Halder J, Ali S, Liu X, Bernardo A, Amand PS, Bai G, Gill US, Turnipseed B, Sehgal SK (2022) Genomic prediction of Fusarium head blight resistance in early stages using advanced breeding lines in hard winter wheat. The Crop J (Early version). https://doi.org/10.1016/j.cj.2022.03.010 [IF: 4.64]

# Bacterial seed inoculation to improve nitrogen uptake and use efficiency in wheat

Paulo Pagliari and Lindsay Pease

Project Period: 01/01/2022 to 12/31/2022

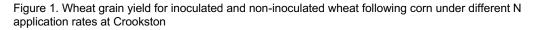
#### **Research Question/Objectives:**

Determine if inoculation of wheat with plant growth promoting bacteria has a positive impact on wheat growth and yield.

Measure soil available nitrogen after inoculation with plant growth promoting bacteria.

Assess nitrogen uptake in plots inoculated with plant growth promoting bacteria

#### **Results:**


The 2022 growing season was very atypical with very limited rainfall during critical grain filling stages. In general wheat yield at Crookston was 75 bu/ac for wheat following corn (Figures 1, 2, 5 and 6) and 49 bu/ac for wheat following soybeans (Figures 3, 4, 7 and 8). At Lamberton wheat yield was 68 and 47 bu/ ac for wheat following corn (Figures 1, 2, 5 and 6) and soybeans (Figures 3, 4, 7 and 8), respectively. Statistical analysis showed that there were no significant treatment effects at either location. Not even a response to N rates was observed for wheat yield (Figures 1, 2, 3, 4). This result is very unexpected as a N response is almost always observed under similar conditions. Lack of rainfall during grain filling stages could have limited the wheat ability to produce high yield this year.

The effect of inoculation could not be determined either as no significant differences were observed for inoculation rate, although there were two trends worth of mentioning. Figure 5 shows that at Crookston inoculation with 0.69oz and applying 45 lbs N/ac resulted in 26 bu/ac more than 0 N treatment. In contrast, Figure 6 shows that at Lamberton inoculation with 0.69oz and 0 N/ac resulted in 12 bu/ac more than the 45 lbs N/ac treatment. Both of these significant differences were observed for wheat after corn. Most of the positive responses for Azospirillum inoculation in our first trial in 2021 were also observed for wheat following corn.

The soil samples and grain samples collected during the growing are now being processed and analyzed for soil available N and grain N uptake. The final report will contain the statistical analysis and results from these chemical tests.

In conclusion the second year for this was also challenging and inconclusive results were observed. Azospirillum is in many cases inoculated alongside other beneficial bacteria such as Pseudomonas, Bacillus, and others. It is possible that a different mix could help improve wheat tolerance to limited available water during critical grain filling periods. Climate change is likely to accentuate how serious this problem is as rain patterns shift even more in response to unpredictable global changes.

Continued on next page 🔶



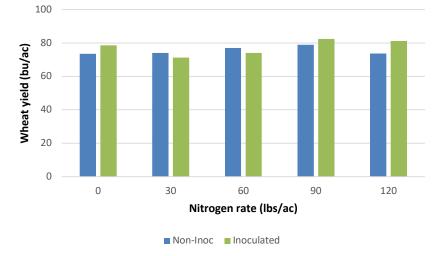
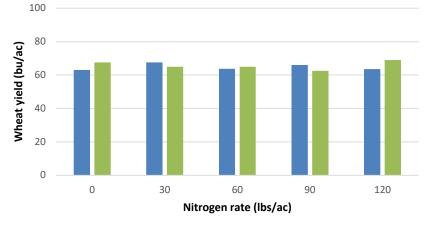




Figure 2. Wheat grain yield for inoculated and non-inoculated wheat following corn under different N application rates at Lamberton



■ Non-Inoc ■ Inoculated

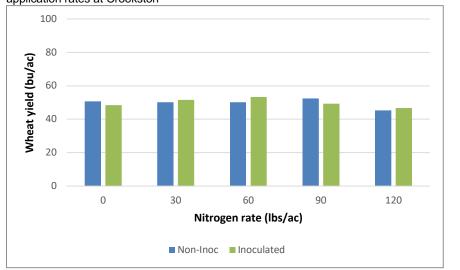



Figure 3. Wheat grain yield for inoculated and non-inoculated wheat following soybean under different N application rates at Crookston

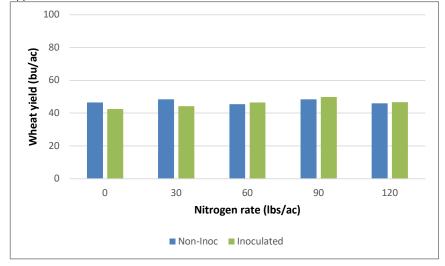
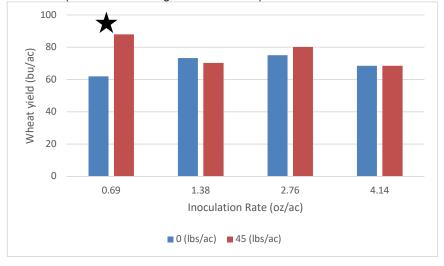
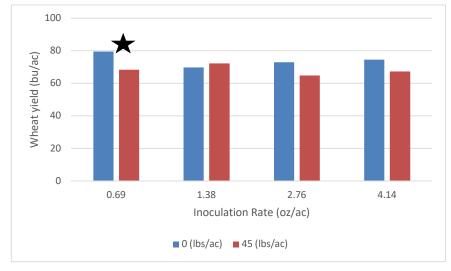
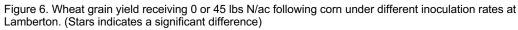






Figure 4. Wheat grain yield for inoculated and non-inoculated wheat following soybean under different N application rates at Lamberton

Figure 5. Wheat grain yield receiving 0 or 45 lbs N/ac following corn under different inoculation rates at Crookston. (Stars indicates a significant difference)









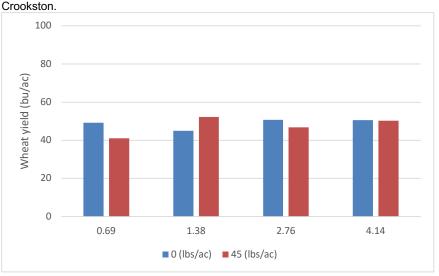
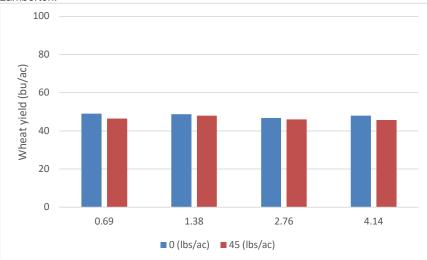




Figure 7. Wheat grain yield receiving 0 or 45 lbs N/ac following soybean under different inoculation rates at

Figure 8. Wheat grain yield receiving 0 or 45 lbs N/ac following soybean under different inoculation rates at Lamberton.



# Application/Use:

Our main goal with this project is to improve nitrogen fertilizer use and help wheat growers be more profitable. Nitrogen fixing bacteria can remove N from the atmosphere and convert it into ammonium or nitrate in the soil which is available for plant uptake. Finding management practices that reduces the cost of production to farmers could lead to significant savings improving overall profits.

# **Materials and Methods:**

Replicated field studies were conducted at two of the University of Minnesota research and outreach center at Lamberton (SWROC) and Crookston (NWROC). To test the effects of seed inoculation on wheat grain yield, wheat was planted after soybean and corn, at Lamberton and Crookston. Treatments tested were inoculation and nitrogen rates. For the inoculation rate portion of the study a fixed N rate was used (45 lbs N ac-1) and the levels of inoculation were 0x, 0.5x, 1x, 2x, and 3x, with x being the recommended inoculation rate (0,69 oz of inoculum per acre). For the N rate portion of the study, there were plots which were inoculated at the 1x inoculum rate and also plots which were not inoculated; nitrogen rates were 0, 30, 60, 90, and 120 lbs of N / acre. Each study was replicated four times for a total of 100 plots in each location. Having equivalent N rates with and without inoculation could allow us to determine the true potential for N fixation from the seed treatments and if a reduction in N fertilization is possible with this seed treatment. Wheat was harvested using plot combine and wheat grain samples were saved for N uptake analysis which is currently being performed at Lamberton in Dr. Pagliari labs.

# Economic Benefit to a Typical 500 Acre Wheat Enterprise:

The benefit to wheat growers would be increased wheat yield with lower N application rates. By reducing the amount of N needed for maximum wheat yield growers would save on fertilizers, specially when fertilizer prices are as high as they are going to be in the 2023 growing season. In addition, lower amounts of N applied to cropping fields will also reduce the amount of N that can potentially cause environmental problems to aquatic systems and drinking water.

# **Related Research:**

Nitrogen (N) fertilization is one of the highest costs in the production process of non-leguminous crops such as wheat (Triticum aestivum). Developing management practices which minimize the reliance on chemical N inputs are critical for global food security and environmental sustainability. Recent research has shown the potential for utilization of plant growth promoting bacteria (PGPB) to enhance nutrient use efficiency in non-leguminous cropping systems (Galindo et al., 2021a). This has the potential to reduce both costs associated with fertilizer purchases and N loss to the environment. Microorganisms such as Azospirillum brasilense and Bacillus subtilis, are PGPB known to have a significant effect on the nutrient balance in the soil-plant ecosystem. The mutualism relationship between PGPB, soil microflora, and plants could lead to better plant nutrition and development and increased productivity, while minimizing the needs for external inputs. The PGPB are nonpathogenic residents of plants or/and soil who act directly to promote growth or indirectly as biological control agents of plant diseases (Mariano et al., 2004). The use of inoculation in non-leguminous crops with non-symbiotic PGPB is increasing in Latin America, in particular for wheat and corn crops (Marks et al., 2015; Salvo et al., 2018; Galindo et al., 2021b). The use of PGPB can significantly reduce the amount of chemical N needed for optimum wheat productivity (Galindo et al., 2021a,b). Therefore, the overall hypothesis of this study is that A. brasilense and B. subtilis could promote plant growth by increasing biological N fixation (BNF), N use efficiency,

overall nutrient uptake, and reduce biotic and abiotic stress.

### **Recommended Future Research:**

This was the second trial conducted in the USA using this specific Azospirillum strain. 2021 was a very challenging growing season and water stress limited plant yield, and the weather conditions in 2022 were similar to those in 2021. Future research needs to be conducted to assess the true potential for the use of this organism at supplying wheat with N from atmospheric N gas under different weather conditions.

# **References:**

Galindo, F.S., Pagliari, P.H., Buzetti, S., Rodrigues, W.L., Fernandes, G.C., Biagini, A.L.C., Tavanti, R.F.R. and Teixeira Filho, M.C.M., 2021a. Nutrient availability affected by silicate and Azospirillum brasilense application in corn–wheat rotation. Agronomy Journal. Galindo, F.S., da Silva, E.C., Pagliari, P.H., Fernandes, G.C., Rodrigues, W.L., Biagini, A.L.C., Baratella, E.B., da Silva Junior, C.A., Neto, M.J.M., Silva, V.M. and Muraoka, T., 2021b. Nitrogen recovery from fertilizer and use efficiency response to Bradyrhizobium sp. and Azospirillum brasilense combined with N rates in cowpea-wheat crop sequence. Applied Soil Ecology, 157, p.103764.

Mariano RLR, Silveira EB, Assis SMP, Gomes AMA, Nascimento ARP, Donato VMTS. 2004. Importance of plant growth-promoting rhizobacteria for a sustainable agriculture. (In Portuguese, with English abstract). Anais Acad. Pernamb. Ci. Agron. 1:89-111.

Marks BB, Megías M, Ollero FJ, Nogueira MA, Araujo RS, Hungria M. 2015. Maize growth promotion by inoculation with Azospirillum brasilense and metabolites of Rhizobium tropici enriched on lipochitooligosaccharides (LCOs). Amb Express 5:71-82. doi: 10.1186/s13568-015-0154-z.

Salvo LP, Ferrando L, Fernandéz-Scavino A, Salamone IEG. 2018. Microorganisms reveal what plants do not: wheat growth and rhizosphere microbial communities after Azospirillum brasilense inoculation and nitrogen fertilization under field conditions. Plant Soil 424:405-417. doi: 10.1007/s11104-017-3548-7.

# **Research on Bacterial Leaf Streak of Wheat**

Ruth Dill-Macky

Project Period: January 1, 2022 – December 31, 2022

#### **Research Question/Objectives:**

This project continues our efforts to address the control of bacterial leaf streak (BLS) of wheat. The ultimate goal of the project was to deliver economic disease control measures to growers. We conducted research to examine the biology of the BLS pathogen with the aim of uncovering avenues of disease control that compliment host resistance. Outcomes of practical value to the wheat grower include understanding the role that seed plays in the survival of the pathogen, the validation of tools to identify the bacterium that incites BLS within seed, crop debris and in soil samples, along with the testing of treatments to disinfest seed. Our previous research indicated that infested seed poses a risk to the subsequent crop, and we have tested protocols to quantify bacteria in seed. We proposed to adapt this test in 2022 to other matrices (crop residues and soil) and to test a protocol that should differentiate between living and dead bacterial cells. We also examined the efficacy of seed treatments in disinfesting seed that is contaminated with the pathogen and evaluated a number of foliar treatments, both chemical and biological, for the control of BLS in the field.

#### **Results:**

Validate molecular assays as tools to rapidly and reliably identify Xtu in plant tissues and soil samples.

- The LAMP assay described by Langlois et al. (2017) and a multiplex PCR described by Roman-Reyna et al. (2022) have been validated using both seed and plant tissue.
- A qPCR protocol developed by Hong et al. (2023, in press) has also been validated using pure X. translucens pv. undulosa cultures.
- We have preserved bacterial suspensions from artificially inoculated seed and leaf tissue from both the field and the growth chamber experiments to validate the qPCR method using these tissue types.
- We will also test naturally infected seed exhibiting black chaff symptoms from the 2022 MN-on farm variety trials.
- Development and optimization of a viability qPCR protocol that will detect and quantify viable X. translucens cells is ongoing.

Determine where in the wheat seed the bacterium is surviving

- A previous preliminary experiment to develop a method to artificially inoculate seed heads in the greenhouse was unsuccessful. This would have allowed us to visualize strains tagged with a fluorescens protein using microscopy.
- Our approach pivoted to examine seed that has been dissected into bran and endosperm and use the qPCR assay to quantify the bacterial load in each fraction. This work is ongoing, and we plan to use seed from the On Farm Variety Trials, as well as seed harvested from plants artificially inoculated in field plots in 2022. This seed is currently being processed.

Determine how long the bacterium is surviving in association with wheat seed.

 Once the viability qPCR is optimized, infested seed harvested in 2022 will be tested to quantify viable bacterial cells at weekly intervals to determine the longevity of the bacterium. The seed for this experiment is still being processed.

Examine the efficacy of seed treatments in reducing Xtu in association with seed.

 A previous preliminary experiment applying dry heat of 72 °C for 4 days as recommended by Fourest et al. (1990) killed the bacteria, but also killed the seed embryo resulting in 0% germination. We are going to use the seed from 2022 that is currently being processed to test a more expansive temperature and time range to evaluate dry heat treatments. Similarly, we will examine the efficacy of a wet heat treatment by placing infested seed in a hot water bath. We can utilize the viability qPCR to quantify living bacteria after heat treatments.

Conduct field trials in collaboration to examine the efficacy of commercial foliar treatments on BLS.

- Two field experiments were conducted, one in Crookston and one in St. Paul. The treatments examined included:
- MasterCop (copper sulfate pentahydrate): applied at early heading (16 fl oz/A) and 10 days later (8 fl oz/A)

- Aviv (biological/Bacillus): applied at early heading (25 fl oz/A) and 10 days later (25 fl oz/A)
- SaniDate 5.0 (hydrogen peroxide): applied at early heading (13.6 fl oz/A) and 10 days later (13.6 fl oz/A)
- Kocide 3000-O (copper hydroxide): applied at early heading (0.75 lb/A) and 10 days later (0.75 lb/A)
- Champ WG (copper hydroxide): applied at early heading (1 lb/A) and 10 days later (1 lb/A)
- Aviv (biological/Bacillus): applied at 4-5 leaf (25 fl oz/A) and 10 days later (25 fl oz/A)
- SaniDate 5.0 (hydrogen peroxide): applied at 4-5 leaf (13.6 fl oz/A) and 10 days later (13.6 fl oz/A)
- Two untreated controls were included one was not inoculated with the BLS pathogen and the other was inoculated. All the plots treated with a product were inoculated with the pathogen

Plots were rated for visual disease development (Table 1) weekly after symptoms appeared till the plots began to mature, the plots were harvested at maturity and yield and grain weight was examined.

 None of the treatments tested reduced the symptoms of BLS and none reduced yield. The only treatment that could be distinguished was the non-inoculated treatment, where plots yielded 20% more than the all the other treatments and where few BLS symptoms were evident.

In addition to these objectives, we evaluated the ability of X. translucens to be transmitted into growing plant tissue from artificially inoculated seed by vacuum infiltration in a sterile environment and the field. Wheat and barley seed was inoculated using rifampicin resistant strains of X. translucens pv. undulosa (Xtu) and X. translucens pv. translucens (Xtt), respectively. Seeds were placed in sterile culture boxes containing water agar and placed in a growth chamber. The coleoptile, 1st and 2nd leaves were sampled and extracts were plated onto Wilbrink's media supplemented with rifampicin, so that only the rifampicin resistant strains used to inoculate would be recovered. Both Xtu and Xtt were recovered from their respective host at all growth stages sampled. Field trials were conducted in two sites on the St. Paul campus, one dryland and one irrigated site. Seed was inoculated in the same manner and with the same strains as in the growth chamber experiments. Plants were sampled weekly beginning with the 3rd leaf through soft dough. Extensive bird damage occurred on maturing seed. Under dryland conditions only Xtt on barley was recovered from 3rd leaf through 6th leaf stages on most replications. Xtt was not recovered from flag leaves or soft dough spikelets. Xtu was recovered only from one replication at the 5th and 6th leaf stage, and not recovered at any other growth stage. Under irrigated conditions both Xtu and Xtt were recovered at all growth stages sampled from wheat and barley, respectively.

• This work indicated that moisture likely plays a role in seed transmission and movement up the plant, particularly in the case of Xtu on wheat.

# Application/Use:

Bacterial leaf streak (BLS) of wheat, caused by Xanthomonas translucens pv. undulosa (Xtu), is presently the most important foliar disease of wheat in Minnesota. Managing BLS is difficult, as fungicides are largely ineffective against bacterial pathogens. Previous work, funded by the MWRPC, has enabled us to establish a regional screening nursery for BLS providing data for growers of the relative resistances in commercial wheat varieties. Although host resistance is critical to disease control, there is no immunity to BLS and additional control options would be advantageous to growers. This project proposed research aimed at developing additional tools that can be used by the grower in the management of BLS. In conjunction with the use of varieties with improved resistance, these tools can provide additional options to the grower in the management of this economically important disease.

#### **Materials and Methods:**

1. Validate molecular assays as tools to rapidly and reliably identify Xtu in plant tissues and soil samples. In 2021 we tested molecular assays (LAMP and PCR) to identify Xtu in wheat seeds. These assays have several practical applications, including identifying seed lots that are free of, or minimally infested with, Xtu. Our goal was to be able to effectively detect contaminated seed lots, such as samples submitted by growers to the UMN Plant Disease Clinic or seed that the breeding programs ship internationally. Clean seed may prove an effective way to reduce the risk of disease in high value seed lots, including foundation seed and seed exchanged between countries such as the UMN breeding program's winter increase in New Zealand. In the 2022 project we worked to validate the molecular tools (LAMP and PCR assays), developed to identify Xtucontaminated seed lots, and to detect the pathogen in other matrices including plant tissues and soil. The two assays (LAMP and PCR) are based on the detection of DNA.

We did this work to determine where the bacterium is surviving between growing seasons, and crop debris and soil had yet to be studied as potential pathogen reservoirs. The ability to detect the pathogen is key to elucidating its full lifecycle and identifying where it survives between growing seasons may suggest additional control options. We also worked to adapt a gPCR protocol that detects and guantifies viable X. translucens cells. Such a method has been developed for the related bacterium, Xanthomonas hortorum. We are using seed from the 2022 field season Minnesota on-farm variety trials to validate the detection of Xtu in seed using the methods outlined above. Jochum Wiersma (UMN), alerted us to those locations with significant naturally occurring BLS. We traveled to these sites, rated BLS and obtain seed following harvest from select varieties (including both BLS susceptible and BLS resistant varieties) from locations with high and low disease pressure. In addition to validating the best of the three molecular tests (LAMP, PCR and/or qPCR) available, we also isolated bacteria from these samples using dilution plating to confirm the presence of viable bacterial cells in the test samples.

2. Determine where in the wheat seed the bacterium

is surviving. We continue the work started in 2020 in 2022 to examine how Xtu colonizes wheat seed to determine where in the wheat seed the pathogen is residing. If Xtu lacks the ability to enter the interior of the seed, antibacterial seed treatments, such as copper compounds, or physical seed treatments such as the applications of heat, may prove useful in reducing seed transmission of the pathogen. Seed will be dissected into major components (bran and endosperm) and qPCR will be used to quantify the bacterial load in each component. This work should confirm if Xtu is inside the wheat seed and associated with the embryo, or if Xtu is surviving only on the seed coat. This work is still to be completed over the coming weeks.

**3. Determine how long the bacterium is surviving in association with wheat seed.** In addition to understanding where in the seed Xtu is surviving, we plan to use the qPCR assay to quantify bacterial cells in seed obtained from the on-farm yield trials, and/ or following artificial inoculation, at regular intervals after harvest to determine how long the bacteria associated with seed remain viable. An understanding of the duration of viability would also aid in developing recommendations for seed handling and treatments aimed at reducing the risk of BLS in a subsequent crop.

4. Examine the efficacy of seed treatments in reducing Xtu in association with seed. Physical

treatments, such as heat (wet or dry), are reported to be effective in killing the bacteria in association with seed. In 2020 we started to examine the role of infected seed in the epidemiology of BLS. In 2022 we examined the use of wet and dry seed treatments on naturally infected seed, obtained from the Minnesota on-farm variety trials, with the goal of reducing Xtu in association with seed. However, physical seed treatments, like chemical treatments, are associated with decreased seed germination and are also most effective on bacteria located close to the seed surface. Seed treatments appear to be most effective when combined with a rapid and reliable test that determines the level of infestation and will likely be limited to use in high value seed lots. Recovery of the bacterium, using dilution plating before and after treatment, was used to determine the efficacy of the treatments. Germination tests were also conducted to determine the impact of the treatments on seed viability.

5. Conduct field trials in collaboration to examine the efficacy of commercial foliar treatments on BLS. We undertook field trials at two Minnesota(St Paul and Crookston) to examine several commercially available copper-based (Champ WG, Kocide 3000-O, SaniDate 5.0, and MasterCop) and one biological treatments (Aviv [Bacillus]) on BLS development in wheat. In addition, non-inoculated and inoculated & untreated control treatments will be included. The trials were inoculated, and BLS development was assessed visually weekly for five weeks following the first observations of symptom development. Yield and test weights were determined at harvest. Our first year of testing, conducted in 2021, showed little impact of copper-based treatments however the dry season was generally unfavorable for BLS development and in 2022 we expanded the number of compounds we are examining.

# Economic Benefit to a Typical 500 Acre Wheat Enterprise

We have demonstrated that bacterial leaf streak (BLS) is of economic importance to the wheat industry. Our data on the response of varieties would allow a grower to select wheat varieties for production that are less susceptible to BLS. The development and introgression of host resistance provides economic and environmentally sustainable control of wheat diseases. Our most recent work has demonstrated the role that seed plays in the survival of the pathogen, provided tools to identify the bacterium that incites BLS within seed, crop debris and in soil samples, along with the testing of treatments to disinfest seed. We have evidence that copper-based products do not provide any reduction in BLS.

# **Related Research:**

We have established close relationships with research and extension plant pathologists and the wheat breeding programs (public and private) in Minnesota and in neighboring states.

# **Publications:**

Curland, R.D., Hallada K.R., Ledman, K.E., and Dill-Macky, R. (2021). First report of bacterial leaf streak caused by Xanthomonas translucens pv. undulosa on cultivated wild rice (Zizania palustris) in Minnesota. Plant Disease, 105:2771.

Ledman, K.E., Curland, R.C., Ishimaru, C.A., and Dill-Macky, R. (2021). Xanthomonas translucens pv. undulosa identified on common weedy grasses in naturally infected wheat fields in Minnesota. Phytopathology, 111:1114-1121.

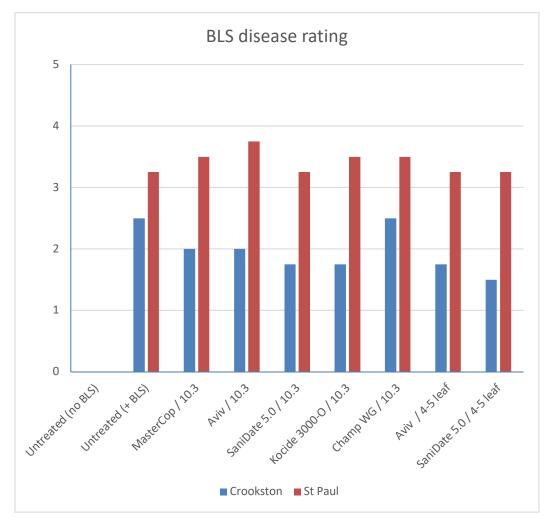



Table 1: BLS symptoms on a 0-9 scale observed 14 days after the initial development of symptoms in field trials conducted at Crookston and St Paul to examine the efficacy of copper-based bactericides (MasterCop, Kocide-3000, and Champ WG), hydrogen peroxide (Sanidate 5.0) and a biological (Aviv) in reducing BLS development. All plots were inoculated with the BLS pathogen, except the non-inoculated control where little disease developed at either location. All treatments were applied twice, with the first application at either the 4-5 leaf stage or at early anthesis. In each case the second applications. No product appeared effective in reducing disease development or preventing yield losses.

Southern Minnesota Small Grains Research and Outreach Project

#### Dr. Jochum J. Wiersma

Project Period: 01/01/2022 - 12/31/2022

#### **Research Question/Objectives:**

The objectives of this grant were to:

- Evaluate variety performance for Hard Red Spring Wheat (HRSW) and Hard Red Winter Wheat (HRWW) varieties across southern Minnesota with locations at Becker, Benson, LeCenter, and Rochester.
- Organize extension programming for small grain production and management in southern Minnesota using summer field days and winter meetings.

#### **Results:**

The winter extension programming for small grains production and management in central and southern Minnesota were held in Morris, New Prague, Rochester, Slayton, and Benson in 2022. Each workshop had a regional focus. Attendance totaled about 100 people across these five locations or about half of the attendance prior to the COVID-19 pandemic. The meetings were well received, with 100% of attendees responding that they would recommend the program to others. All of the workshop attendees also reported having a deeper understanding of the subject matter as a result of attending the sessions, while 89% of attendees planned to change production practices due to attending a workshop. Field days were held from June 27th near Le Center and New Ulm to showcase variety trials. Attendance totaled 30, again about half of the attendance prior to the COVID-19 pandemic. No field day was organized near Benson nor is data reported from the trial because the trial was lost due to early season flooding.

A summary of the attained grain yield of the HRSW and HRWW variety trial results can be found in tables 1 and 2. The average yield across the two southern Minnesota locations from data was reported at the time of writing was 69 bu/ac for HRWW (2 locations) and 58 bu/ac for HRSW (6 locations). Plots were also used as sentinel plots to monitor disease and insect pests during the growing season (In conjunction with the Minnesota Small Grains Pest Survey).

#### **Application/Use:**

Central and southern Minnesota have not had large small grain acreages in recent decades. Small grains have often been grown in this region for reasons other than maximized production, such as manure applications, straw production, forage/cover-crop establishment, or tiling projects. The combination of weed and insect resistance issues, and interest in diversifying crop rotations to improve soil health has inspired more farmers in these regions to consider growing small grains. Our research and demonstration plots have documented the ability to grow small grains in central and southern Minnesota with high yield and quality that can maximize profitability. Our results have been echoed by reports from farmers in these regions who utilize advanced management tools and genetics despite the added production risks of heat and disease stressors that are more prevalent in southern Minnesota.

#### **Materials and Methods:**

The winter wheat and rye variety trials had 32 and 16 entries, respectively. The spring wheat, oats, and barley variety trials had 66, 30, and 22 entries, respectively. Trials were all a randomized complete block design with either three or four replications. Field preparations and fertility management were completed by plot cooperators and represented typical production practices. Planting, weed control, data collection, and harvest were completed by the research group.

# Economic Benefit to a Typical 500 Acre Wheat Enterprise:

Variety selection is one of the most critical decisions made on a wheat enterprise. A well-adapted versus a poorly-adapted variety can be the difference in farm profitability. Even with a very late start across Minnesota, there was a 14 bu/ac difference between the highest-yielding 10% of varieties and the lowestyielding 10% of varieties in the HRSW variety trials across the six southern Minnesota location. This 14 bu/ ac difference in yield could increase returns by over \$120 per acre, or over \$ 60,000 in gross returns for a 500-acre wheat enterprise. All while only changing variety selection. Variety trials are especially valuable in southern Minnesota, where variety trial information is otherwise limited. The ability to recommend varieties adapted to southern Minnesota as well as for farmers to see varieties firsthand before planting them has an invaluable impact on current and future wheat farmers in southern Minnesota. These trials also influence the spring wheat, barley, and oat breeding programs at the University of Minnesota, by allowing on-farm assessments of yield, disease, lodging and other agronomic characteristics that are used to influence future varietal releases and agronomic ratings. These factors further add to the long-term impact that this project has on a typical wheat farm in Minnesota.

#### **Related Research:**

This research is integrally linked with the small grain breeding programs at the University of Minnesota. The spring wheat, barley, and oat breeding programs utilize the data generated in these trials as part of their southern small grain variety performance evaluations, which expands the geographical coverage of small grain variety trials as well as provides on-farm credibility to the variety evaluations. The rye variety trials also link with this project with funding from other sources.

# **Recommended Future Research:**

Variety trial data is much more valuable when it is aggregated with ongoing variety trials. Just because a variety performed well one year does not mean it will repeat the same in the future. Variety selections should be based on multiple years of data from multiple locations. This is why these variety trials should be continued into the future so that farmers can continue to refine their variety selections as new genetics become available.

#### **Publications:**

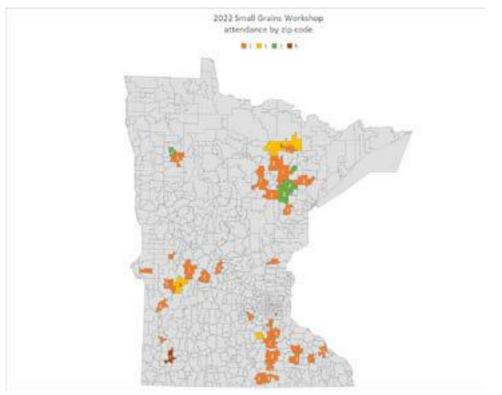
Results of yield trials for spring and winter wheat,

barley, oats, and winter rye are part of the variety trial results that will be published in the on-line publication Minnesota Field Crop Variety Trials (https://varietytrials. umn.edu/). The 2021 trial results were published in:

- Anderson J.A, J.J. Wiersma, S. Reynolds, N. Stuart, H. Lindell, R. Dill-Macky, J. Kolmer, M. Rouse, and Y. Jin. 2021. Hard Red Spring Wheat. In: 2021 Minnesota Field Crop Variety Trials. Minnesota Agricultural Experiment Station Publication. University of Minnesota, St. Paul, MN [Online]. https:// varietytrials.umn.edu/spring-wheat.
- Smith K., R. Dill-Macky, D. Von Ruckert, J.J. Wiersma. 2021. Oat. In: 2021 Minnesota Field Crop Variety Trials. Minnesota Agricultural Experiment Station Publication. University of Minnesota, St. Paul, MN [Online]. https://varietytrials.umn.edu/barley.
- Smith, K., R. Dill-Macky, J.J. Wiersma, B. Steffenson, K. Beaubien, and E. Schiefelbein. 2021. Barley.
   In: 2021 Minnesota Field Crop Variety Trials.
   Minnesota Agricultural Experiment Station
   Publication. University of Minnesota, St. Paul, MN [Online]. https://varietytrials.umn.edu/oat.
- Wiersma, J.J. and J.A. Anderson. 2021. Hard Red Winter Wheat. In: 2021 Minnesota Field Crop Trials. Minnesota Agricultural Experiment Station Publication. University of Minnesota, St. Paul, MN [Online]. https://varietytrials.umn.edu/winterwheat.
- Wiersma, J.J. 2021 Winter Rye. In: 2021 Minnesota Field Crop Trials. Minnesota Agricultural Experiment Station Publication MP 121-2021. University of Minnesota, St. Paul, MN [Online] https://varietytrials.umn.edu/winter-rye.




Table 1 - Preliminary summary of grain yield of spring wheat varieties tested in performance evaluations in six locations across southern Minnesota in 2022.


|                            | Becker       |              |              |              |              |              | _            |
|----------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Entry                      | (Irrigated)  | LeCenter     | Lamberton    | Morris       | St. Paul     | Waseca       | Average      |
|                            | (bu/acre)    |
| AP Gunsmoke CL25           | 62.3         | 81.0         | 68.7         | 67.3         | 56.6         | 38.5         | 62.3         |
| AP Murdock                 | 55.9         | 84.4         | 60.3         | 65.6         | 41.9         | 41.9         | 58.2         |
| AP Smith                   | 60.0         | 81.0         | 59.7         | 53.6         | 50.3         | 39.2         | 57.0         |
| Ascend-SD                  | 71.1         | 86.0         | 66.9         | 75.8         | 50.8         | 46.9         | 66.3         |
| Bolles                     | 55.9         | 74.4         | 53.1         | 54.2         | 46.1         | 36.6         | 53.5         |
| CAG Justify                | 61.2         | 86.8         | 68.7         | 75.8         | 57.6         | 43.8         | 65.8         |
| CAG Reckless               | 65.9         | 79.4         | 65.7         | 67.3         | 59.2         | 37.7         | 62.3         |
| CAG Recoil                 | 44.1         | 88.5         | 56.1         | 60.4         | 45.6         | 39.6         | 55.9         |
| CP3099A                    | 55.3         | 91.0         | 69.9         | 54.7         | 48.7         | 42.7         | 60.5         |
| CP3119A                    | 52.9         | 94.3         | 54.3         | 43.3         | 48.2         | 38.5         | 55.3         |
| CP3188                     | 58.2         | 85.2         | 54.3         | 65.0         | 50.8         | 37.3         | 58.2         |
| CP3530                     | 57.6         | 88.5         | 60.9         | 61.0         | 56.6         | 41.1         | 61.1         |
| CP3915                     | 59.4         | 77.7         | 63.9         | 50.7         | 60.8         | 32.4         | 57.6         |
| CPX39120                   | 37.0         | 100.1        | 63.9         | 47.9         | 39.3         | 28.2         | 53.0         |
| Driver                     | 62.9         | 85.2         | 64.5         | 63.3         | 63.9         | 36.6         | 62.9         |
| Dyna-Gro Ambush            | 64.1         | 87.7         | 66.9         | 62.7         | 54.5         | 42.7         | 62.9         |
| Dyna-Gro Ballistic         | 54.1         | 81.9         | 63.3         | 59.9         | 59.2         | 39.6         | 59.4         |
| Dyna-Gro Commander         | 56.4         | 79.4         | 54.3         | 61.0         | 59.2<br>57.6 | 42.7         | 58.8         |
| Lang-MN                    | 55.9         | 79.4         | 55.5         | 56.4         | 53.4         | 42.7         | 56.5         |
| LCS Ascent                 | 67.6         | 83.5         | 59.7         | 63.8         | 61.3         | 40.4<br>37.0 | 62.3         |
| LCS Ascent                 | 62.3         |              | 62.7         | 56.4         | 52.4         | 42.3         | 61.1         |
| LCS Cannon                 | 72.3         | 89.3<br>81.0 | 63.9         | 66.1         | 71.8         | 42.3         | 66.3         |
| LCS Cannon<br>LCS Dual     | 72.3<br>69.4 | 80.2         | 63.9         | 61.0         | 71.0<br>51.9 | 42.3         | 62.3         |
|                            | 69.4<br>57.6 | 00.2<br>90.1 | 66.3         | 63.8         | 51.9         | 45.7<br>44.2 | 62.3         |
| LCS Trigger<br>Linkert     | 57.6<br>61.2 | 90.1<br>73.6 | 58.5         | 54.7         | 52.4<br>57.1 | 44.2<br>34.3 | 62.3<br>56.5 |
| MN-Rothsay                 | 59.4         | 75.0         | 58.5<br>52.5 | 53.6         | 46.6         | 34.3<br>42.3 | 55.3         |
| ,                          | 59.4<br>62.9 | 76.9<br>83.5 | 52.5<br>63.9 | 53.6<br>52.4 | 46.6<br>33.5 | 42.3         | 55.9         |
| MN-Torgy                   | 62.9<br>57.0 | 81.9         | 62.1         | 52.4<br>57.0 | 53.5<br>52.9 | 40.0<br>32.0 | 55.9<br>57.0 |
| MN-Washburn                | 57.0<br>66.4 | 81.0         | 56.7         | 57.0<br>52.4 | 52.9<br>66.0 | 32.0         | 57.0<br>59.9 |
| MS Barracuda<br>MS Charger | 72.9         | 88.5         | 68.1         | 64.4         | 63.4         | 44.2         | 66.9         |
| MS Cobra                   | 64.7         | 81.0         | 62.1         | 49.6         | 60.8         | 39.6         | 59.4         |
| MS Ranchero                | 48.8         | 75.3         | 48.8         | 49.0<br>38.8 | 40.9         | 29.7         | 47.1         |
|                            | 40.0<br>60.6 | 73.6         | 40.0<br>58.5 | 59.3         | 40.9<br>58.2 | 40.0         | 58.2         |
| ND Frohberg<br>ND Heron    | 64.1         | 73.0         | 56.1         | 59.5<br>54.2 | 63.4         | 37.3         | 58.2         |
|                            | 57.0         | 84.4         | 63.3         | 67.3         | 50.3         | 37.3         | 50.2<br>59.4 |
| Prosper                    | 53.5         | 80.2         | 66.3         | 54.7         | 50.5<br>56.1 | 36.2         | 58.2         |
| Shelly<br>SY 611 CL25      | 53.5<br>68.2 | 00.2<br>79.4 | 58.5         | 56.4         | 56.1<br>54.0 | 40.4         | 50.2<br>59.4 |
|                            | 45.9         | 79.4<br>78.6 | 58.5<br>53.7 | 50.4<br>50.7 | 54.0<br>51.4 | 40.4<br>29.3 | 59.4<br>51.8 |
| SY Longmire6               | 45.9<br>62.9 | 70.0<br>82.7 | 60.9         | 50.7<br>54.7 | -            | 29.3<br>29.7 | 51.0<br>57.6 |
| SY McCloud<br>SY Valda     | 62.9<br>59.4 |              |              | 54.7<br>58.1 | 54.5         | 29.7<br>40.4 |              |
|                            |              | 91.0<br>91.0 | 60.3         |              | 60.3         | -            | 61.7         |
| TCG-Heartland              | 59.4<br>65.0 | 81.0         | 53.1         | 49.0         | 56.1         | 40.0         | 56.5         |
| TCG-Spitfire               | 65.9<br>67.6 | 93.5         | 66.9         | 61.6         | 57.6         | 41.1         | 64.6         |
| TCG-Wildcat                | 67.6         | 85.2         | 62.7         | 70.1         | 48.2         | 39.6         | 62.3         |
| WB9479                     | 58.8         | 77.7         | 59.7         | 53.0         | 55.0         | 38.9         | 57.0         |
| WB9590                     | 62.9         | 81.9         | 53.1         | 55.9         | 58.7         | 38.1         | 58.2         |
| Mean (bu/acre)             | 58.8         | 82.7         | 60.3         | 57.0         | 52.4         | 38.1         | 58.2         |
| LSD (0.1)                  | 11.1         | 9.8          | 7.7          | 10.5         | 8.3          | 5.3          | 3.1          |

| Table 2 - Preliminary summary of grain yield of winter wheat va |
|-----------------------------------------------------------------|
| evaluations in two locations across Minnesota in 2022.          |

|                      | Becker      |           |
|----------------------|-------------|-----------|
| Entry                | (Irrigated) | LeCenter  |
|                      | (bu/acre)   | (bu/acre) |
|                      |             |           |
| AAC Goldrush         | 63.2        | 54.4      |
| AAC Vortex           | 61.6        | 60.1      |
| AC Emerson           | 58.9        | 52.8      |
| AP Bigfoot           | 75.5        | 70.1      |
| Bobcat               | 63.0        | 47.1      |
| Flathead             | 71.8        | 62.9      |
| FourOSix             | 74.4        | 59.8      |
| Jerry                | 71.9        | 54.4      |
| Jupiter <sup>1</sup> | 94.4        | 70.8      |
| Keldin               | 72.8        | 65.3      |
| Minter               | 44.1        | 47.2      |
| MS Iceman            | 73.4        | 64.7      |
| ND Noreen            | 71.7        | 64.0      |
| Redfield             | 80.4        | 66.5      |
| Ruth                 | 78.1        | 69.9      |
| SD Andes             | 76.4        | 66.4      |
| SD Midland           | 84.8        | 65.4      |
| SY Wolverine         | 83.9        | 80.3      |
| SY100 <sup>2</sup>   | 93.8        | 67.5      |
| Thompson             | 65.2        | 66.2      |
| Viking 211           | 80.5        | 66.7      |
| WB4309               | 84.1        | 74.2      |
| Whitetail            | 76.9        | 62.3      |
| Winner               | 80.1        | 73.9      |
| Mean (bu/acre)       | 74.2        | 63.9      |
| LSD(0.01)            | 11.3        | 7.8       |

<sup>1</sup> Soft white winter wheat <sup>2</sup> Soft red winter wheat

Figure 1: Zip code map of those who attended one of the small grain workshops sponsored by this grant and completed the evaluation survey.



# 2022 Wheat, Barley, and Oats Variety Performance in Minnesota - Preliminary Report 24

# Preface by Jochum Wiersma

'Dumbfounded' and 'befuddled' are the two adjectives that come to mind when reviewing the 2022 growing season. While there are parallels to the 2012 and 2013 growing seasons, the 2021 and 2022 growing seasons were extremer in every way compared to the aforementioned pair nearly a decade ago. The spring was cold and wet. Many producers commented to me that they could not recall ever getting started this late and with such difficult seedbed conditions. By the middle of May, only 5% of the spring wheat acres had been seeded. Two weeks later only half the acres had been seeded, compared to 2021, when the half way mark was reached four weeks earlier. Planting continued well past the date for full crop insurance coverage and ultimately, only a very limited number of acres were not seeded.

The first half of June remained cooler than normal and allowed ample tillering for the earliest seeded wheat. The second half of June, however, broke with the first half of the month and set the trend for the remainder of the summer with average temperatures slightly to well above the climate normal. Relative humidity and dew points were higher too than they had been the past few seasons. The disease risk models in turn indicated moderate to high risk for not just tan spot but, more importantly, Fusarium head blight (FHB) just as the majority of the spring wheat crop reached anthesis.

Many, including me, were only hoping for something a bit better than last year's disappointing numbers while keeping their fingers crossed that incidence of FHB would be low enough to avoid discounts. That was until the first combines started rolling. Initial yield reports were astoundingly good, and concerns of discounts for low-test weight and/or presence of DON were unnecessary. The only surprises 2022 did yield were some reports of ergot in the earliest harvested spring wheat and barley and lodging in later seeded fields in the central Red River Valley due to Hessian fly. USDA-NASS' initial spring wheat yield forecast for Minnesota on July 1 was 53 bu/acre or 13 bu/acre more than their 2021 forecast. USDA-NASS corrected their forecast upwards to 56 bu/acre one month later. In the September Small Grains Summary USDA-NASS reported Minnesota's average spring wheat yield to be 61 bu/acre or nearly 30% higher than the year before. The state's average barley yield increased yearover-year by the same percentage point to 72.0 bu/ acre, while the state average for oat increased 2 bu/ acre to 59 bu/acre. Acreage of all three commodities remain near historic lows with only 55,000, 140,000, and 1.2 million acres of barley, oats, and spring wheat harvested, respectively.

# Introduction:

Successful small grain production begins with selection of the best varieties for a particular farm or field. For that reason, varieties are compared in trial plots on the Minnesota Agricultural Experiment Station (MAES) sites at St. Paul, Waseca, Lamberton, Morris, and Crookston. In addition to these five MAES locations, trials are also planted at the Magnusson Research Farm near Roseau and with a number of farmer cooperators. The cooperator plots are handled so factors affecting yield and performance are as close to uniform for all entries at each location as possible.

The MAES 2022 Wheat, Barley, and Oat Variety Performance in Minnesota Preliminary Report 24 is presented under authority granted by the Hatch Act of 1887 to the Minnesota Agricultural Experiment Station to conduct performance trials on farm crops and interpret data for the public.

The MAES and the College of Food, Agricultural and Natural Resource Sciences (CFANS) grants permission to reproduce, print, and distribute the data in this publication - via the tables - only in their entirety, without rearrangement, manipulation, or reinterpretation. Permission is also granted to reproduce a maturity group sub-table provided the complete table headings and table notes are included. Use and reproduction of any material from this publication must credit the MAES and the CFANS as its source.

#### Variety Classifications:

Varieties are listed in the tables alphabetically. Seed of tested varieties can be eligible for certification, and use of certified seed is encouraged. However, certification does not imply a recommendation. The intellectual property rights of the breeders or owners of the variety are listed as either PVP, PVP(pending), PVP(94), patent, or none. PVP protection means that the a variety is protected under the Plant Variety Protection Act for a period of 20 years, while PVP(94) means that the variety is protected for 20 years with the additional stipulation that seed of the variety can only be sold as registered and certified classes of seed. PVP(pending) indicates that the PVP application has been made and that you should consider the variety to have the same intellectual property rights as those provided by PVP(94). The designation of 'Patent' means that the variety is protected by a utility patent and that farmsaved seed may be prohibited by the patent holder. The designation 'None' means that the breeder or owner never requested any intellectual property protection or that legal protection has expired. Registered and certified seed is available from seed dealers or from growers listed in the 'Minnesota Crop Improvement Association 2022 Directory', available through the Minnesota Crop Improvement Association office in St. Paul or online at http://www.mncia.org

#### Interpretation of the Data:

The presented data are the preliminary variety trial information for single (2022) and multiple year (2020-2022) comparisons in Minnesota. The yields are reported as a percentage of the location mean, with the overall mean (bu/acre) listed below. Twoyear and especially one-year data are less reliable and should be interpreted with caution. In contrast, averages across multiple environments, whether they are different years and/or locations, provide a more reliable estimate of mean performance and are more predictive of what you may expect from the variety the next growing season. The least significant difference or LSD is a statistical method to determine whether the observed yield difference between any two varieties is due to true, genetic differences between the varieties or due to experimental error. If the difference in yield between two varieties equals or exceeds the LSD value, the higher yielding one was indeed superior in yield. If the difference is less, the yield difference may have been due to chance rather than genetic differences, and we are unable to differentiate the two varieties. The 5% or 10% unit indicates that, with either 95% or 90% confidence, the observed difference is indeed a true difference in performance. Lowering this confidence level will allow more varieties to appear different from each other, but also increases the chances that false conclusions are drawn.

#### The Authors and Contributors:

This report is written, compiled, and edited by Dr. Jochum Wiersma, Small Grains Specialist. The contributing authors/principal investigators are:

Dr. James Anderson, Wheat Breeder, Department of Agronomy & Plant Genetics, St. Paul. Dr. Kevin Smith, Barley Breeder, Department of Agronomy & Plant Genetics, St. Paul. Dr. Ruth Dill Macky, Plant Pathologist, Department of Plant Pathology, St. Paul. Dr. James Kolmer, USDA-ARS, Cereal Disease Laboratory, St. Paul. Dr. Matt Rouse, USDA-ARS, Cereal Disease Laboratory, St. Paul. Dr. Brian Steffenson, Plant Pathologist, Department of Plant Pathology, St. Paul. Dr. Brian Steffenson, Plant Pathologist, Department of Plant Pathology, St. Paul. Dr. Yue Jin, USDA-ARS, Cereal Disease Laboratory, St. Paul.

Karen Beaubien, Matt Bickell, Dave Grafstrom, Tom Hoverstad, Michael Leiseth, Houston Lindell, Steve Quiring, Curt Reese, Susan Reynolds, Dimitri von Ruckert, Edward Schiefelbein, Nathan Stuart, Donn Vellekson, and Joe Wodarek supervised fieldwork at the various sites. Special thanks are also due to all cooperating producers.

#### **SPRING WHEAT**

James Anderson, Jochum Wiersma, Susan Reynolds, Nathan Stuart, Houston Lindell, Ruth Dill-Macky, James Kolmer, Matt Rouse, and Yue Jin.

MN-Torgy jumped from fifth to first place in its third year of production with just over a fifth of Minnesota's 1.2 million acres of HRSW. WB9590 was a close second with a slight increase in overall acreage and the most widely grown variety in much of the Red River Valley. SY Valda maintained its third place ranking with 11% of the acreage.

First-time entrants in the 2022 trials were Ascend-SD, CAG Recoil, CPX39120, LCS Ascent, MN-Rothsay, MS Charger, and ND-Heron. Ascend-SD and MN-Rothsay were tested under number in prior years and their 2 and 3 year averages are reported, respectively as well. WestBred did not enter any HRSW varieties in the University of Minnesota variety trial system. WB9479, WB9590, however, were included in the testing in 2022 as they each occupied more than 5% of the acreage in 2021.

Continued on next page 🔶

The results of the variety performance evaluations for spring wheat are summarized in Tables 1 through 7. The varietal characteristics are presented in Tables 1 through 3. Tables 4, 5, and 6 present the relative grain yield of tested varieties in 1, 2, and 3-year comparisons. Table 7 presents the grain yield when fungal pathogens are controlled to the maximum extent possible compared to the same trials without the use of fungicides. The average yield across the six southern testing locations was 60 bu/acre in 2022. This average compares to a southern average of 56 bu/ acre in 2021 and a three-year average of 58 bu/acre. The eight northern locations averaged 77 bu/acre in 2022 compared to 72 bu/acre last year and 85 bu/acre for the three-year average. Newcomers Ascend-SD, CP3099A, CP3119A, and MS Charger were among the highest yielding varieties in single year comparisons in both the north and southern portions of the state. LCS Trigger once again held the top spot for grain yield in both single and the multiple year comparisons. Higher yielding cultivars tend to be lower in grain protein. Variety selection is one approach to avoid discounts for low protein, but N fertility management remains paramount to maximize grain yield and grain protein.

Varieties with a lodging score of 2 and 3 are considered exceptionally good and will only lodge in extreme cases, while varieties with a rating of 4 or 5 have adequate straw strength most years. Increasing seeding rates generally increases the risk of lodging for all but the strongest and shortest semi-dwarf HRSW varieties. Conversely, lower seeding rates will lower the risk of lodging, but commonly results in lower grain yield potential. Linkert remains superior for straw strength varieties amongst public releases while MS-Washburn and MN-Rothsay are the only public release with a lodging rating of 3. Private releases that have superior lodging ratings include AP Smith, CP3915, MS Barracuda, SY Longmire and all entries in the variety trials from 21st Century Genetics (TCG) and WestBred.

Varieties with disease ratings of 4 or lower are considered the best defense against a particular disease. Varieties that are rated 7 or higher are likely to suffer significant economic losses under even moderate disease pressure. The foliar disease rating represents the total complex of leaf diseases other than the rusts, and includes the Septoria complex and tan spot. Although varieties may differ from their response to each of those diseases, the rating does not differentiate among them. Therefore, the rating should be used as a general indication and only for varietal selection in areas where these diseases historically have been a problem or if the previous crop is wheat or barley. Control of leaf diseases with fungicides may be warranted, even for those varieties with an above average rating.

Bacterial leaf streak (BLS) cannot be controlled with fungicides. Selection of more resistant varieties is the only recommended practice at this time if you have a history of problems with this disease. CAG Reckless, CP3530, CP3915, Driver, Dyna-Gro Ballistic, Lang-MN, LCS Trigger, MN-Torgy, MN-Washburn, ND Frohberg, SY Longmire, and TCG-Spitfire provide the best resistance against BLS.

Lang-MN, LCS Buster, LCS Trigger, and MN-Torgy provide the best resistance against FHB while another fifteen varieties have a rating of 4 for FHB. Combined, this group of varieties includes some of the top yielders and varieties with higher grain protein.

#### BARLEY

#### Kevin Smith, Ruth Dill-Macky, Jochum Wiersma, Brian Steffenson, Karen Beaubien and Ed Schiefelbein

The results of the variety performance evaluations for spring barley are summarized in Tables 8 through 12. The varietal characteristics and disease reactions are presented in Tables 8 and 9. Tables 10 through 12 present the relative grain yield of the tested varieties in single and multiple year comparisons. The average yield across the 13 testing locations was 101 bu/acre in 2022 (Table 12). This is up from a state average of 80 bu/A in 2021. The highest yields this year were recorded in Roseau with 132 bu/A (Table 10) while the lowest grain yields were recorded in St. Paul with 62 bu/A (Table 11).

Rasmusson was the highest yielding six-row variety and AAC Synergy, Brewski, and ND Genesis were the highest yielding two-row varieties based on the 2022 state average (Table 12). In general, the six-row varieties, except for Quest, had lower stem breakage (Table 8). In general, two-rows headed later than sixrows with the exception of Conlon which is the earliest maturity two-row variety tested.

Table 9 describes the reaction of this year's entries to five major diseases in the region. Disease reaction is based on data from at least two experiments (except spot blotch) and scored from 1–9; where 1 is most resistant and 9 is most susceptible. The varieties

tested differed widely for resistance to spot blotch with most six-rows having good resistance (except Quest), while the two rows varied over the entire range of the rating scale 1-9. Net blotch can be an important disease and most varieties tested have good resistance with the exceptions of Brewski and Pinnacle. It is notable that Pinnacle is highly susceptible to net blotch. Conlon continues to be the variety with the best resistance to Fusarium head blight expressed as lower concentrations of vomitoxin or DON. All the varieties tested are generally susceptible (ratings from 3-6) to the QCCI race of stem rust which has not been identified as a threat in the Midwest yet. All listed varieties carry stem rust resistance to the predominate Puccinia graminis f. sp. tritici race (MCCF). Most varieties possess pre-heading resistance to stem rust; thus, they will not likely incur much damage unless the disease epidemic is severe. Bacterial Leaf Streak (BLS) cannot be controlled by fungicides and there are some modest differences (ratings from 3-6) in resistance among the tested varieties.

#### OATS

Kevin P. Smith, Ruth Dill-Macky, Dimitri von Ruckert, Karen Beaubien, Jochum Wiersma

Entries in the state oat variety trial were evaluated in 9 locations. In addition, entries were evaluated for disease resistance to crown rust, barley yellow dwarf virus (BYDV), and smut in dedicated, inoculated nurseries. The results of the variety evaluations are summarized in Tables 13 to 17. The origin and agronomic characteristics of the tested oat varieties are listed in Table 13. Maturity, height, and test weight data are presented as statewide averages from 2020-2022 except where noted. Lodging data is also a statewide average from the same period, but only from locations where lodging was present. Maturity, height, and lodging are important considerations for variety selection based on the intended location and expected end use of the crop.

Crown rust continues to be a major limiting factor to oat production in Minnesota that must be managed to achieve optimal yield. Buckthorn (Rhamnus cathartica L.), the alternate host of crown rust is widespread in Minnesota, allowing for a persistent and particularly aggressive pathogen population. Rust in all yield trials was managed through treatment with a propiconazolebased fungicide when the flag leaf was fully extended (Feekes 9) to evaluate the yield potential with little to no disease. Crown rust and other disease resistance ratings are listed in Table 14. All disease scores were converted to a 1-9 scale. A score of 1 is very resistant and a score of 9 is very susceptible. The most economical way of controlling crown rust is through resistant varieties; however, application of fungicide to a variety with rating of 4 or greater is prudent if crown rust is present in the lower canopy at Feekes 9. MN-Pearl, SD Buffalo and Warrior appear to be the best varieties for crown rust resistance.

Other important diseases include BYDV and smut which were evaluated in inoculated nurseries at the University of Illinois and the University of Minnesota, respectively. We observed little difference among the tested varieties for resistance to BYDV (ratings from 3-4). Most varieties tested had good resistance to smut with the exceptions of SD Buffalo and ND Heart. A seed treatment and certified seed should be used to manage smut. Choose the varieties with the lowest disease ratings in an organic production system and plant as early as possible to reduce the risk of yield losses caused by these diseases.

For grain production, lodging and grain quality traits should be considered when choosing a variety (Table 13). Oat varieties with high protein and low oil are preferred in the food market. High test weight, as a proxy for milling yield, is very important in both the food and feed markets. Contact your local elevator or buyer and ask whether they prefer particular varieties.

Tables 15 through 17 present the relative grain yield of the tested varieties in single and multiple year comparisons. For 2022, the highest yields were in Roseau and the lowest yields in Waseca. WIX10305-4 followed by SD Buffalo and Hayden were the top yielding varieties in statewide averages for 2022. These same three varieties performed well in both the northern and southern regions in 2021. Some varieties perform differently in the north and south. For example, in 2022 MN-Pearl was the highest yielding variety in the north but yielded lower in the south. In general, earlier maturing varieties perform better in southern Minnesota because flowering can occur when it is cooler. Similarly, later performing varieties tend to perform better in northern Minnesota.

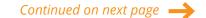



 Table 1. Origin and agronomic characteristics of hard red spring wheat varieties in Minnesota in single-year (2022)

 and multiple-year comparisons.

| Entry                        | Origin <sup>1</sup>                                      | Legal Status                         | Desired Stand<br>(Plants/Acre) <sup>2</sup> | Days to<br>Heading <sup>3</sup> | Height<br>Inches <sup>3</sup> | Straw<br>Strength <sup>4</sup> |
|------------------------------|----------------------------------------------------------|--------------------------------------|---------------------------------------------|---------------------------------|-------------------------------|--------------------------------|
| AP Gunsmoke CL2 <sup>5</sup> | 2021 AgriPro/Syngenta                                    | PVP (94)                             | 1.3                                         | 49.0                            | 26.5                          | 5                              |
| AP Murdock                   | 2020 AgriPro/Syngenta                                    | PVP (94)                             | 1.3                                         | 48.8                            | 25.0                          | 5                              |
| AP Smith                     | 2021 AgriPro/Syngenta                                    | PVP (94)                             | 1.3                                         | 51.7                            | 24.3                          | 2                              |
| Ascend-SD                    | 2021 SDSU                                                | PVP (94) pending                     | 1.3                                         | 50.0                            | 29.4                          | 5–6                            |
| Bolles                       | 2015 MN                                                  | PVP (94)                             | 1.3                                         | 51.3                            | 28.1                          | 4                              |
| CAG Justify                  | 2021 Champions Alliance Group                            | PVP (94)                             | 1.2                                         | 51.1                            | 27.5                          | 5                              |
| CAG Reckless                 | 2021 Champions Alliance Group                            | PVP (94)                             | 1.3                                         | 49.8                            | 28.2                          | 5                              |
| CAG Recoil                   | 2022 Champions Alliance Group                            | PVP (94) pending                     | 1.3                                         | 55.2                            | 27.2                          | 3-4                            |
| СР3099А                      | 2020 CROPLAN                                             | PVP (94) pending                     | 1.3                                         | 53.8                            | 28.6                          | 4-5                            |
| CP3119A                      | 2021 CROPLAN                                             | PVP (94) pending                     | 1.3                                         | 54.8                            | 27.9                          | 2-3                            |
| CP3188                       | 2020 CROPLAN                                             | PVP (94) pending                     | 1.3                                         | 50.2                            | 28.3                          | 5                              |
| CP3530                       | 2015 CROPLAN                                             | Patented                             | 1.3                                         | 50.8                            | 29.5                          | 5                              |
| СР3915                       | 2019 CROPLAN                                             | PVP (94) pending                     | 1.3                                         | 49.9                            | 26.4                          | 3                              |
| CPX39120                     | 2023 CROPLAN                                             | PVP (94) pending                     | 1.3                                         | 57.6                            | 29.5                          | 5                              |
| Driver                       | 2020 SDSU                                                | PVP (94)                             | 1.3                                         | 50.5                            | 28.9                          | 4                              |
| Dyna-Gro Ambush              | 2016 Dyna-Gro                                            | PVP (94)                             | 1.5                                         | 50.6                            | 27.8                          | 5                              |
| ,<br>Dyna-Gro Ballistic      | 2018 Dyna-Gro                                            | PVP (94)                             | 1.5                                         | 48.2                            | 27.4                          | 5                              |
| Dyna-Gro Commander           | 2019 Dyna-Gro                                            | PVP (94)                             | 1.5                                         | 48.5                            | 26.7                          | 4                              |
| Lang-MN                      | 2017 MN                                                  | PVP (94)                             | 1.3                                         | 50.9                            | 27.8                          | 4                              |
| LCS Ascent                   | 2022 Limagrain Cereal Seeds                              | PVP (94)                             | 1.4                                         | 47.3                            | 27.9                          | 5                              |
| LCS Buster                   | 2020 Limagrain Cereal Seeds                              | PVP (94)                             | 1.3                                         | 52.8                            | 27.5                          | 4-5                            |
| LCS Cannon                   | 2018 Limagrain Cereal Seeds                              | PVP (94)                             | 1.4                                         | 46.8                            | 27.8                          | 4                              |
| LCS Dual                     | 2021 Limagrain Cereal Seeds                              | PVP (94)                             | 1.4                                         | 48.3                            | 28.1                          | 3-4                            |
| LCS Trigger                  | 2016 Limagrain Cereal Seeds                              | PVP (94)                             | 1.3                                         | 53.3                            | 27.4                          | 5                              |
| Linkert                      | 2013 MN                                                  | PVP (94)                             | 1.3                                         | 49.5                            | 25.8                          | 2                              |
| MN-Rothsay                   | 2022 MN                                                  | PVP (94) pending                     | 1.3                                         | 51.4                            | 25.4                          | 3                              |
| MN-Torgy                     | 2020 MN                                                  | PVP (94)                             | 1.3                                         | 50.7                            | 26.1                          | 4                              |
| MN-Washburn                  | 2019 MN                                                  | PVP (94)                             | 1.3                                         | 50.8                            | 26.8                          | 3                              |
| MS Barracuda                 | 2018 Meridian Seeds                                      | PVP (94)                             | 1.3                                         | 46.8                            | 26.6                          | 3                              |
| MS Charger                   | 2023 Meridian Seeds                                      | PVP (94) pending                     | 1.3                                         | 48.2                            | 26.7                          | 4–5                            |
| MS Cobra                     | 2022 Meridian Seeds                                      | PVP (94)                             | 1.3                                         | 48.6                            | 26.7                          | 3-4                            |
| MS Ranchero                  | 2020 Meridian Seeds                                      | PVP (94)                             | 1.3                                         | 53.3                            | 28.5                          | 6                              |
| ND Frohberg                  | 2020 NDSU                                                | PVP (94)                             | 1.3                                         | 49.5                            | 28.7                          | 5                              |
| ND Heron                     | 2021 NDSU                                                | PVP (94) pending                     | 1.3                                         | 47.7                            | 28.7                          | 5-6                            |
| Prosper                      | 2011 NDSU                                                | PVP (94)                             | 1.3                                         | 50.8                            | 27.5                          | 6                              |
| Shelly                       | 2016 MN                                                  | PVP (94)                             | 1.3                                         | 50.0                            | 25.7                          | 5                              |
| SY 611 CL2 <sup>5</sup>      | 2019 AgriPro/Syngenta                                    | PVP (94)                             | 1.3                                         | 48.6                            | 24.9                          | 4                              |
| SY Longmire <sup>6</sup>     | 2019 AgriPro/Syngenta                                    | PVP (94)                             | 1.3                                         | 50.0                            | 26.3                          | 3                              |
| SY McCloud                   | 2019 AgriPro/Syngenta<br>2019 AgriPro/Syngenta           | PVP (94)                             | 1.3                                         | 49.3                            | 26.6                          | 4                              |
| SY Valda                     | 2015 AgriPro/Syngenta                                    | PVP (94)                             | 1.3                                         | 50.4                            | 25.2                          | 5                              |
| TCG-Heartland                | 2019 21st Century Genetics                               | PVP (94), Patent pending             | 1.6                                         | 47.8                            | 24.4                          | 3                              |
| TCG-Spitfire                 | 2016 21st Century Genetics                               | PVP (94), Patent pending<br>PVP (94) | 1.5                                         | 51.7                            | 27.5                          | 3                              |
| TCG-Wildcat                  | 2010 21st Century Genetics<br>2020 21st Century Genetics | PVP (94), Patent pending             | 1.5                                         | 50.3                            | 26.5                          | 3                              |
| WB9479                       | 2017 WestBred                                            | Patented, PVP (94)                   | 1.3                                         | 48.6                            | 24.7                          | 3                              |
| WB9590                       | 2017 WestBred<br>2017 WestBred                           | Patented, PVP (94)                   | 1.3                                         | 48.6                            | 23.9                          | 3                              |
| 1109090                      | 2017 WEStDieu                                            | ratenieu, rvr (34)                   | 1.5                                         | 40.0                            | 23.9                          | J                              |

Mean

<sup>1</sup> Abbreviations: MN = Minnesota Agricultural Experiment Station; NDSU = North Dakota State University Research Foundation; SDSU = South Dakota

 $^2$  Our standard seeding rate is designed to achieve a desired stand of 1.3 million plants/acre, assuming a 20% stand loss and adjusting for the germination  $^3$  2022 data

<sup>4</sup> 1-9 scale in which 1 is the strongest straw and 9 is the weakest. Based on 2014-2022 data. The rating of newer entries may change by as much as one rating point as more data are collected.

 $^{\rm 5}\,$  AP Gunsmoke CL2 and SY 611 CL2 have tolerance to Beyond® herbicide.

<sup>6</sup> SY Longmire has solid stems.

|                           |              | ht (lb/Bu)   | Protoi       | n (%) <sup>1</sup> |   | Baking               | Pre-Harvest |
|---------------------------|--------------|--------------|--------------|--------------------|---|----------------------|-------------|
| Entry                     | 2022         | 2 yr         | 2022         | 2 yr               | - | Quality <sup>2</sup> |             |
| AP Gunsmoke CL2           | 58.7         | 59.7         | 15.7         | 15.3               |   | 5                    | 3           |
| AP Murdock                | 59.4         | 60.2         | 14.2         | 14.5               |   | 5                    | 1           |
| AP Smith                  | 58.8         | 60.2         | 14.2         | 14.5               |   | 3                    | 4           |
| Ascend-SD                 | 59.1         | 60.3         | 15.2         | 14.8               |   | 5                    | 4           |
| Bolles                    | 58.9         | 60.1         | 16.8         | 16.7               |   | 1                    | 1           |
| CAG Justify               | 58.2         | 58.7         | 13.8         | 13.9               |   | 1                    | 3           |
| CAG Reckless              | 59.9         | 61.1         | 15.1         | 15.0               |   | _                    | 4           |
| CAG Recoil                | 59.2         | -            | 14.6         | -                  |   | _                    | 1           |
| CP3099A                   | 57.0         | 58.1         | 13.1         | 13.0               |   | 6                    | 1           |
| CP3119A                   | 54.5         | 55.8         | 13.9         | 13.6               |   | -                    | 3           |
| CP3188                    | 57.3         | 58.5         | 13.8         | 13.6               |   | _                    | 1           |
| CP3530                    | 59.5         | 60.1         | 15.2         | 15.1               |   | 3                    | 1           |
| CP3915                    | 59.0         | 60.6         | 15.2         | 15.1               |   | 4                    | 1           |
| CPX39120                  | 52.6         | -            | 13.2         | -                  |   | -                    | 2           |
| Driver                    | 60.5         | 61.8         | 13.9         | 14.4               |   | 6                    | 3           |
| Driver<br>Dyna-Gro Ambush | 58.6         | 60.5         | 14.8         | 14.4               |   | 2                    | 3           |
| Dyna-Gro Ballistic        | 60.2         | 60.5         | 14.4         | 14.6               |   | 5                    | 3           |
| Dyna-Gro Commander        | 59.1         | 60.6         | 14.9         | 14.5               |   | 6                    | 1           |
| Lang-MN                   | 59.9         | 60.8         | 15.2         | 15.1               |   | 3                    | 1           |
| LCS Ascent                | 59.9         | - 00.0       | 15.2         | -                  |   | -                    | 2           |
| LCS Ascent                | 59.8         | 57.9         | 14.6         | 12.7               |   | 7                    | 4           |
| LCS Cannon                |              | 62.1         | 12.0         | 12.7               |   | 4                    | 3           |
| LCS Dual                  | 60.8<br>59.2 | - 02.1       | 14.6         | -                  |   | 4                    | 2           |
|                           | 59.2         | 60.2         |              | 13.3               |   | 7                    | 2           |
| LCS Trigger<br>Linkert    | 60.0         | 61.3         | 13.1<br>15.6 | 15.7               |   | 1                    | 1           |
|                           | 59.5         | 60.7         | 14.8         | 14.8               |   | 5                    | 2           |
| MN-Rothsay                | 59.5         | 61.0         |              | 14.8               |   | 4                    | 1           |
| MN-Torgy<br>MN-Washburn   | 59.5         | 60.2         | 15.1<br>14.8 | 13.2               |   | 3                    | 1           |
|                           |              |              |              |                    |   |                      |             |
| MS Barracuda              | 58.6<br>58.9 | 60.4         | 15.9         | 15.4<br>_          |   | 4                    | 3<br>1      |
| MS Charger<br>MS Cobra    |              |              | 13.6         |                    |   | _                    | 4           |
|                           | 58.9<br>56.9 | 60.6<br>59.0 | 15.1<br>15.0 | 14.9<br>14.5       |   | 6                    | 4           |
| MS Ranchero               |              |              |              |                    |   |                      |             |
| ND Frohberg               | 59.8         | 61.0         | 15.0         | 14.9               |   | 3                    | 4           |
| ND Heron                  | 60.5         | -            | 15.3         | -                  |   | 5                    | 1           |
| Prosper                   | 59.4         | 60.2         | 14.1         | 14.2               |   |                      | 1           |
| Shelly                    | 58.9         | 60.6         | 14.7         | 14.4               |   | 5                    | 1           |
| SY 611 CL2                | 59.1         | 60.7         | 15.1         | 14.9               |   | 6                    | 2           |
| SY Longmire               | 58.0         | 60.0         | 15.8         | 15.3               |   | 3                    | 3           |
| SY McCloud                | 60.7         | 61.8         | 15.4         | 15.5               |   | 3                    | 2           |
| SY Valda                  | 59.1         | 60.5         | 14.7         | 14.4               |   | 6                    | 2           |
| TCG-Heartland             | 59.2         | 60.9         | 15.6         | 15.5               |   | 2                    | 1           |
| TCG-Spitfire              | 58.2         | 59.5         | 14.3         | 14.2               |   | 3                    | 4           |
| TCG-Wildcat               | 60.0         | 61.1         | 15.2         | 15.0               |   | 4                    | 1           |
| WB9479                    | 58.6         | 60.3         | 16.1         | 15.9               |   | 2                    | 1           |
| WB9590                    | 58.8         | 60.4         | 15.7         | 15.5               |   | 4                    | 1           |
| M                         | 50.0         | <u> </u>     |              |                    |   |                      |             |
| Mean                      | 58.8         | 60.1         | 14.9         | 14.8               |   |                      |             |
| No. Environments          | 6            | 17           | 6            | 17                 |   |                      |             |

 Table 2. Grain quality of hard red spring wheat varieties in Minnesota in single-year

 (2022) and multiple-year comparisons.

<sup>1</sup> 12% moisture basis.

<sup>2</sup> 2014-2021 crop years, where applicable

 $^3$  1-9 scale in which 1 is best and 9 is worst. Values of 1-2 should be considered as resistant.

Continued on next page ->

| III IIIIIIIpie-year compa     | Leaf         | Stripe            | Stem              | Bacterial                | Other Leaf            |        |
|-------------------------------|--------------|-------------------|-------------------|--------------------------|-----------------------|--------|
| Entry                         | Lear<br>Rust | Rust <sup>2</sup> | Rust <sup>3</sup> | Leaf Streak <sup>4</sup> | Diseases <sup>5</sup> | Scab   |
| AP Gunsmoke CL2               |              |                   |                   |                          |                       |        |
|                               | 3            | -                 | 1                 | 8                        | 7                     | 5      |
| AP Murdock                    | 3            | -                 | 1                 | 4                        | 6                     | 7      |
| AP Smith                      | 6            | -                 | 1                 | 4                        | 5                     | 6      |
| Ascend-SD                     | 3            | -                 | 1                 | 2-3                      | 6                     | 4      |
| Bolles                        | 2            | 1                 | 2                 | 4                        | 4                     | 5      |
| CAG Justify                   | 3            | -                 | 2                 | 4–5                      | 4                     | 4      |
| CAG Reckless                  | 1            | -                 | 1                 | 3                        | 5                     | 4      |
| CAG Recoil                    | 2            | -                 | 2                 | 2–3                      | 5                     | _      |
| СР3099А                       | 6            | _                 | 8                 | 6-7                      | 4                     | 5-6    |
| CP3119A                       | 5            | _                 | 2                 | 6-7                      | 4                     | 5-6    |
| CP3188                        | 1            |                   | 6                 | 6-7                      | 6                     | 5      |
| CP3530                        | 7            | 3                 | 1                 |                          | 6                     | 4      |
|                               |              |                   |                   | 3                        |                       |        |
| CP3915                        | 1            | -                 | 1                 | 2                        | 5                     | 4      |
| CPX39120                      | 7            | -                 | 6                 | 4–5                      | 3                     | -      |
| Driver                        | 3            | -                 | 1                 | 3                        | 4                     | 4      |
| Dyna-Gro Ambush               | 4            | -                 | 2                 | 4                        | 4                     | 4      |
| Dyna-Gro Ballistic            | 4            | -                 | 3                 | 3                        | 4                     | 5      |
| Dyna-Gro Commander            | 2            | -                 | 1                 | 4                        | 6                     | 5      |
| Lang-MN                       | 1            | -                 | 2                 | 3                        | 4                     | 3      |
| LCS Ascent                    | 4            | -                 | 1-2               | 6–7                      | 5                     | -      |
| LCS Buster                    | 3            | _                 | 1                 | 4                        | 3                     | 3      |
| LCS Cannon                    | 4            | _                 | 2                 | 5                        | 7                     | 5      |
| LCS Dual                      | 3            | _                 | 1-2               | 5                        | 4                     | _      |
| LCS Trigger                   | 1            |                   | 2                 | 2                        | 3                     | 3      |
| Linkert                       | 3            | 1                 | 1                 | 5                        | 5                     | 5      |
| MN-Rothsay                    | 4            | -                 | 2                 | 4                        | 3                     | 4      |
| MN-Torgy                      | 3            | -                 | 1                 | 3                        | 4                     | 3      |
| MN-Washburn                   | 1            | 2                 | 1                 | 3                        | 4                     | 4      |
| MS Barracuda                  | 6            | -                 | 2                 | 7                        | 5                     | 5      |
| MS Charger                    | -            | -                 | 2                 | 5                        | 6                     | -      |
| MS Cobra                      | 2            | -                 | 1                 | 4-5                      | 4                     | 5      |
| MS Ranchero                   | 3<br>3       | -                 | 1<br>1            | 6<br>3                   | 3<br>5                | 4<br>5 |
| ND Frohberg<br>ND Heron       | 5            | _                 | 1-2               | 5                        | 4                     | 5      |
| Prosper                       | 6            | 5                 | 2                 | 4                        | 5                     | 5      |
| Shelly                        | 5            | 1                 | 2                 | 6                        | 4                     | 4      |
| SY 611 CL2                    | 4            | -                 | 5                 | 4                        | 4                     | 4      |
| SY Longmire                   | 5            | -                 | 1                 | 3                        | 5                     | 7      |
| SY McCloud                    | 3            | -                 | 1                 | 6                        | 6                     | 4      |
| SY Valda                      | 4            | 2                 | 1                 | 4                        | 5                     | 4      |
| TCG-Heartland<br>TCG-Spitfire | 3            | -                 | 2<br>2            | 5                        | 6<br>5                | 6<br>6 |
| TCG-Wildcat                   | 3            | _                 | 3                 | 6                        | 5                     | 6<br>7 |
| WB9479                        | 6            | _                 | 2                 | 6                        | 6                     | 7      |
| WB9590                        | 6            | -                 | 2                 | 6                        | 6                     | 7      |
|                               |              | •                 |                   |                          |                       |        |

# Table 3. Disease reactions<sup>1</sup> of hard red spring wheat varieties in Minnesota in multiple-year comparisons.

<sup>1</sup> 1-9 scale where 1=most resistant, 9=most susceptible.

<sup>2</sup> Based on natural infections in 2015 at Kimball, Lamberton, and Waseca.

 $^{\rm 3}~$  Stem rust levels have been very low in production fields in recent years, even on susceptible varieties.

<sup>4</sup> Bacterial leaf streak symptoms are highly variable from one environment to the next. The rating of entries may change as more data is collected.

<sup>5</sup> Combined rating of tan spot and septoria.

| NOTES |                |            |
|-------|----------------|------------|
| <br>  |                |            |
|       |                |            |
| <br>  | Continued on n | ext page → |

| -                       | C        | rooksto | on   | • | Fe        | rgus Fa   | alls    |   |           | Hallock |           |          | Oklee | • •       |   |
|-------------------------|----------|---------|------|---|-----------|-----------|---------|---|-----------|---------|-----------|----------|-------|-----------|---|
| Entry                   | 2022     | 2 Yr    | 3 Yr |   | 2022      | 2 Yr      | 3 Yr    |   | 2022      | 2 Yr    | 3 Yr      | 2022     | 2 Yr  | 3 Yr      |   |
| AP Gunsmoke CL2         | 95       | 100     | 102  |   | 102       | 101       | 101     |   | 99        | 100     | 101       | 102      | 105   | 110       |   |
| AP Murdock              | 108      | 102     | 103  |   | 89        | 89        | 92      |   | 90        | 91      | 94        | 103      | 94    | 102       |   |
| AP Smith                | 101      | 100     | 100  |   | 91        | 98        | 98      |   | 92        | 96      | 94        | 120      | 110   | 105       |   |
| Ascend-SD               | 102      | 97      | -    |   | 111       | 109       | -       |   | 99        | 101     | -         | 91       | 100   | -         |   |
| Bolles                  | 96       | 94      | 94   |   | 91        | 96        | 94      |   | 90        | 89      | 91        | 89       | 90    | 91        |   |
| CAG Justify             | 96       | 94      | -    |   | 99        | 105       | -       |   | 115       | 112     | -         | 96       | 101   | -         |   |
| CAG Reckless            | 91       | 100     | -    |   | 95        | 101       | -       |   | 101       | 103     | -         | 93       | 98    | -         |   |
| CAG Recoil              | 106      | -       | -    |   | 101       | -         | -       |   | 97        | -       | -         | 93       | -     | -         |   |
| CP3099A                 | 119      | 107     | -    |   | 115       | 118       | -       |   | 114       | 113     | -         | 122      | 131   | -         |   |
| CP3119A                 | 93       | 100     | -    |   | 100       | 108       | -       |   | 109       | 104     | -         | 119      | 117   | -         |   |
| CP3188                  | 105      | 108     | -    |   | 90        | 99        | -       |   | 91        | 96      | -         | 98       | 102   | -         |   |
| CP3530                  | 97       | 88      | 90   |   | 94        | 97        | 97      |   | 109       | 101     | 105       | 96       | 93    | 96        |   |
| CP3915                  | 97       | 93      | 96   |   | 96        | 96        | 98      |   | 98        | 102     | 99        | 100      | 97    | 94        |   |
| CPX39120                | 66       | -       | -    |   | 106       | -         | -       |   | 95        | -       | -         | 105      | -     | -         |   |
| Driver                  | 105      | 103     | 102  |   | 107       | 108       | 107     |   | 102       | 102     | 107       | 108      | 114   | 112       |   |
| Dyna-Gro Ambush         | 92       | 102     | 103  |   | 103       | 105       | 103     |   | 110       | 103     | 104       | 112      | 101   | 103       |   |
| Dyna-Gro Ballistic      | 99       | 98      | 101  |   | 103       | 105       | 106     |   | 100       | 101     | 102       | 94       | 105   | 105       |   |
| Dyna-Gro Commander      | 102      | 103     | 100  |   | 87        | 93        | 96      |   | 97        | 97      | 99        | 100      | 98    | 99        |   |
| Lang-MN                 | 105      | 104     | 103  |   | 102       | 98        | 99      |   | 102       | 100     | 101       | 92       | 91    | 93        |   |
| LCS Ascent              | 97       | -       | -    |   | 95        | -         | -       |   | 105       | -       | -         | 104      | -     | -         |   |
| LCS Buster              | 113      | 104     | 104  |   | 110       | 109       | 112     |   | 112       | 109     | 110       | 107      | 109   | 116       |   |
| LCS Cannon              | 97       | 93      | 95   |   | 96        | 94        | 96      |   | 87        | 94      | 93        | 99       | 100   | 102       |   |
| LCS Dual                | 102      | -       | -    |   | 102       | -         | -       |   | 105       | -       | -         | 84       | -     | -         |   |
| LCS Trigger             | 111      | 106     | 108  |   | 107       | 102       | 108     |   | 117       | 109     | 116       | 119      | 110   | 114       |   |
| Linkert                 | 100      | 104     | 100  |   | 84        | 88        | 91      |   | 88        | 95      | 96        | 88       | 83    | 87        |   |
| MN-Rothsay              | 106      | 111     | 110  |   | 98        | 100       | 103     |   | 114       | 107     | 106       | 107      | 107   | 107       |   |
| MN-Torgy                | 105      | 105     | 105  |   | 99        | 99        | 102     |   | 106       | 102     | 100       | 82       | 88    | 95        |   |
| MN-Washburn             | 101      | 97      | 97   |   | 113       | 102       | 101     |   | 99        | 100     | 100       | 80       | 88    | 92        |   |
| MS Barracuda            | 97       | 91      | 92   |   | 97        | 96        | 96      |   | 90        | 96      | 96        | 92       | 101   | 102       |   |
| MS Charger              | 116      | -       | -    |   | 108       | -         | -       |   | 106       | -       | -         | 109      | -     | -         |   |
| MS Cobra                | 102      | 101     | -    |   | 90        | 100       | -       |   | 99        | 100     | -         | 99       | 94    | -         |   |
| MS Ranchero             | 86       | 101     | 101  |   | 110<br>94 | 104<br>95 | 101     |   | 111<br>97 | 106     | 107<br>92 | 94       | 97    | 100<br>97 |   |
| ND Frohberg<br>ND Heron | 88<br>94 | 100     | 98   |   | 94<br>96  | - 25      | 99<br>- |   | 97        | 93      | 92        | 86<br>99 | 95    | 97        | 1 |
|                         | 94<br>92 | 93      | - 98 |   | 115       | 113       | 112     |   | 94<br>106 | - 104   | 105       | 109      | 106   | 108       | 1 |
| Prosper<br>Shelly       | 102      | 100     | 102  |   | 105       | 107       | 108     |   | 100       | 104     | 105       | 99       | 100   | 108       |   |
| SY 611 CL2              | 98       | 96      | 98   |   | 105       | 110       | 108     |   | 93        | 99      | 97        | 108      | 100   | 105       |   |
| SY Longmire             | 94       | 93      | 95   |   | 92        | 97        | 97      |   | 98        | 97      | 96        | 93       | 96    | 95        |   |
| SY McCloud              | 106      | 107     | 102  |   | 99        | 98        | 99      |   | 92        | 97      | 100       | 94       | 97    | 99        |   |
| SY Valda                | 91       | 92      | 96   |   | 106       | 101       | 103     |   | 108       | 107     | 108       | 105      | 107   | 105       |   |
| TCG-Heartland           | 94       | 97      | 98   |   | 93        | 93        | 96      |   | 89        | 91      | 90        | 91       | 93    | 94        |   |
| TCG-Spitfire            | 108      | 103     | 105  |   | 101       | 109       | 109     |   | 96        | 100     | 98        | 101      | 97    | 100       |   |
| TCG-Wildcat             | 108      | 100     | 101  |   | 88        | 97        | 99      |   | 99        | 99      | 99        | 99       | 100   | 99        |   |
| WB9479                  | 100      | 99      | 101  |   | 89        | 90        | 92      |   | 97        | 94      | 97        | 93       | 95    | 99        |   |
| WB9590                  | 100      | 99      | 103  |   | 105       | 104       | 103     |   | 102       | 98      | 105       | 106      | 98    | 101       |   |
|                         |          |         |      |   |           |           |         | • |           |         | _,,,      |          |       |           |   |
| Mean (Bu/Acre)          | 96.1     | 76.9    | 74.6 |   | 83.9      | 79.1      | 80.1    |   | 82.3      | 77.3    | 72.8      | 71.8     | 70.8  | 73.5      |   |
| LSD (0.10)              | 9.0      | 9.5     | 6.2  |   | 14.6      | 6.4       | 4.3     |   | 20.0      | 6.0     | 5.1       | <br>18.9 | 7.5   | 5.7       |   |
|                         |          |         |      |   |           |           |         |   |           |         |           |          |       |           |   |

## Table 4. Relative grain yield of hard red spring wheat varieties in northern Minnesota locations in single-year

| <b>2022</b><br>82<br>117 | 2 Yr        | 3 Yr        |              |             |             |              |             |             |            |        |             |
|--------------------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|------------|--------|-------------|
|                          |             | 311         | 2022         | 2 Yr        | 3 Yr        | 2022         | 2 Yr        | 3 Yr        | 202        | 2 2 Yr | 3 Yr        |
| 117                      | 94          | 93          | 101          | 101         | 101         | 94           | 97          | 98          | 102        | 2 104  | 101         |
| 11/                      | 108         | 108         | 103          | 99          | 102         | 110          | 100         | 106         | 113        | 105    | 111         |
| 102                      | 101         | 99          | 91           | 93          | 97          | 99           | 100         | 102         | 93         | 98     | 95          |
| 101                      | 99          | -           | 113          | 107         | -           | 117          | 111         | -           | 120        | 109    | -           |
| 89                       | 96          | 97          | 91           | 95          | 95          | 100          | 94          | 94          | 87         |        | 88          |
| 102                      | 104         | -           | 120          | 110         | -           | 105          | 104         | -           | 115        |        | -           |
| 97                       | 100         | -           | 106          | 105         | -           | 104          | 105         | _           | 104        |        | -           |
| 113                      | _           | -           | 86           | -           | _           | 98           | _           |             | 95         |        | -           |
| 103                      | 103         | -           | 121          | 115         | _           | 106          | 111         | -           | 115        |        | _           |
| 79                       | 85          | _           | 101          | 112         | -           | 89           | 105         | _           | 111        |        | _           |
| 95                       | 101         | _           | 107          | 106         | _           | 98           | 103         | _           | 106        |        | _           |
| 102                      | 99          | 100         | 117          | 111         | 106         | 107          | 105         | 104         | 112        |        | 109         |
| 102                      | 103         | 101         | 99           | 95          | 103         | 107          | 96          | 98          | 117        |        | 102         |
| 84                       | -           | -           | 74           | -           | -           | 70           | -           | -           |            |        | -           |
| 106                      | 107         | 108         | 116          | 108         | 105         | 99           | 100         | 103         | 96<br>102  |        | 100         |
| 94                       | 98          | 108         | 103          | 108         | 105         | 112          | 100         | 103         | 102        |        | 100         |
|                          |             |             |              |             |             |              |             |             |            |        |             |
| 87                       | 92          | 96          | 95           | 98          | 106         | 107          | 105         | 107         | 104        |        | 100         |
| 106                      | 104         | 101         | 99           | 101         | 101         | 98           | 97          | 101         | 102        |        | 105         |
| 94                       | 95          | 95          | 99           | 93          | 97          | 98           | 100         | 97          | 95         |        | 102         |
| 91                       | _           | -           | 110          | -           | -           | 105          | -           | -           | 105        |        | -           |
| 107                      | 108         | 111         | 99           | 100         | 109         | 107          | 107         | 110         | 100        |        | 104         |
| 104                      | 104         | 107         | 109          | 109         | 104         | 104          | 105         | 102         | 104        |        | 105         |
| 102                      | -           | -           | 97           | -           | -           | 99           | -           | -           | 98         |        | -           |
| 125                      | 115         | 118         | 116          | 105         | 110         | 110          | 108         | 110         | 114        |        | 110         |
| 89                       | 89          | 89          | 91           | 89          | 90          | 93           | 96          | 92          | 91         |        | 90          |
| 105                      | 107         | 106         | 108          | 104         | 105         | 109          | 104         | 105         | 100        |        | 102         |
| 103                      | 103         | 101         | 103          | 97          | 100         | 116          | 108         | 111         | 93         |        | 99          |
| 103                      | 101         | 100         | 93           | 98          | 90          | 106          | 98          | 99          | 101        | . 97   | 90          |
| 94                       | 97          | 93          | 100          | 102         | 98          | 93           | 92          | 93          | 92         | 100    | 103         |
| 101                      | -           | -           | 110          | -           | -           | 97           | -           | -           | 109        | ) –    | -           |
| 93                       | 98          | -           | 97           | 101         | -           | 95           | 94          | -           | 94         | 97     | -           |
| 90                       | 95          | 97          | 96           | 101         | 105         | 87           | 88          | 97          | 109        | ) 105  | 113         |
| 88                       | 92          | 92          | 105          | 102         | 99          | 84           | 88          | 88          | 89         |        | 96          |
| 86                       | -           | -           | 111          | -           | -           | 94           | -           | -           | 93         |        | -           |
| 94                       | 101         | 101         | 98           | 102         | 105         | 109          | 110         | 111         | 104        |        | 99          |
| 102                      | 97          | 96          | 115          | 107         | 102         | 105          | 103         | 101         | 107        |        | 108         |
| 113                      | 106         | 104         | 107          | 104         | 105         | 103          | 98          | 101         | 97         |        | 98          |
| 97                       | 98          | 98          | 84           | 90          | 90          | 96           | 100         | 100         | 103        |        | 92          |
| 99                       | 97          | 97          | 102          | 104         | 103         | 92           | 91          | 88          | 95         |        | 99          |
| 113                      | 105         | 106         | 102          | 104         | 103         | 107          | 107         | 111         | 97         | 99     | 102         |
| 94                       | 87          | 94          | 77           | 90          | 92          | 93           | 89          | 96          | 80         |        | 88          |
| 111                      | 113         | 111         | 91           | 90          | 92          | 106          | 105         | 103         | 92         |        | 98          |
| 100                      |             |             |              |             |             |              |             |             |            |        |             |
|                          | 103         | 103         | 109          | 104         | 107         | 105          | 98          | 104         | 105        |        | 106         |
| 96                       | 98          | 94          | 91           | 92          | 92          | 96           | 92          | 96          | 105        |        | 104         |
| 95                       | 97          | 100         | 102          | 101         | 103         | 97           | 92          | 93          | 104        | 102    | 105         |
| 96.9<br>7.9              | 91.1<br>7.4 | 83.1<br>5.9 | 80.8<br>10.6 | 86.0<br>7.2 | 86.0<br>6.2 | 89.5<br>11.4 | 79.8<br>7.0 | 77.1<br>5.6 | 83.<br>19. |        | 71.3<br>7.1 |

### (2022) and multiple-year comparisons (2020-2022).



| 2022).             |      | Becker |      | Benson <sup>1</sup> | Le Center |      |      |
|--------------------|------|--------|------|---------------------|-----------|------|------|
| Entry              | 2022 | 2 Yr   | 3 Yr | 2 Yr                | 2022      | 2 Yr | 3 Yr |
| AP Gunsmoke CL2    | 106  | 105    | 105  | 100                 | 98        | 103  | 104  |
| AP Murdock         | 95   | 99     | 99   | 93                  | 102       | 98   | 102  |
| AP Smith           | 102  | 98     | 98   | 104                 | 98        | 100  | 99   |
| Ascend-SD          | 121  | 115    | -    | -                   | 104       | 103  | -    |
| Bolles             | 95   | 88     | 89   | 100                 | 90        | 90   | 89   |
| CAG Justify        | 104  | 97     | -    | _                   | 105       | 97   | -    |
| CAG Reckless       | 112  | 118    |      | -                   | 96        | 96   | _    |
| CAG Recoil         | 75   | -      | · _  | -                   | 107       | -    | _    |
| CP3099A            | 94   | 98     |      | -                   | 110       | 101  | -    |
| CP3119A            | 90   | 104    | _    | -                   | 114       | 110  | -    |
| CP3188             | 99   | 103    | -    | -                   | 103       | 106  | -    |
| CP3530             | 98   | 97     | 97   | 107                 | 107       | 108  | 107  |
| CP3915             | 101  | 104    | 105  | 94                  | 94        | 95   | 96   |
| CPX39120           | 63   | -      | -    | -                   | 121       | -    | -    |
| Driver             | 107  | 106    | 106  | 103                 | 103       | 102  | 100  |
| Dyna-Gro Ambush    | 109  | 102    | 102  | 104                 | 106       | 102  | 107  |
| Dyna-Gro Ballistic | 92   | 101    | 101  | 105                 | 99        | 101  | 103  |
| Dyna-Gro Commander | 96   | 103    | 103  | 112                 | 96        | 101  | 102  |
| Lang-MN            | 95   | 97     | 97   | 95                  | 93        | 96   | 96   |
| LCS Ascent         | 115  | -      | -    | _                   | 101       | -    | -    |
| LCS Buster         | 106  | 114    | 115  | 105                 | 108       | 104  | 105  |
| LCS Cannon         | 123  | 114    | 113  | 101                 | 98        | 104  | 107  |
| LCS Dual           | 118  | -      | -    | _                   | 97        | -    | -    |
| LCS Trigger        | 98   | 105    | 106  | 118                 | 109       | 112  | 112  |
| Linkert            | 104  | 102    | 102  | 97                  | 89        | 94   | 93   |
| MN-Rothsay         | 101  | 105    | 105  | 107                 | 93        | 97   | 98   |
| MN-Torgy           | 107  | 107    | 107  | 102                 | 101       | 103  | 105  |
| MN-Washburn        | 97   | 96     | 96   | 93                  | 99        | 99   | 102  |
| MS Barracuda       | 113  | 105    | 105  | 95                  | 98        | 103  | 105  |
| MS Charger         | 124  | -      | -    | -                   | 107       | -    | -    |
| MS Cobra           | 110  | 105    | -    | -                   | 98        | 101  | -    |
| MS Ranchero        | 83   | 87     | 87   | 102                 | 91        | 96   | 95   |
| ND Frohberg        | 103  | 102    | 103  | 104                 | 89        | 95   | 96   |
| ND Heron           | 109  | -      | -    | _                   | 90        | -    | -    |
| Prosper            | 97   | 103    | 104  | 105                 | 102       | 103  | 105  |
| Shelly             | 91   | 94     | 94   | 107                 | 97        | 101  | 104  |
| SY 611 CL2         | 116  | 111    | 112  | 98                  | 96        | 96   | 93   |
| SY Longmire        | 78   | 90     | 90   | 94                  | 95        | 96   | 95   |
| SY McCloud         | 107  | 97     | 97   | 93                  | 100       | 102  | 100  |
| SY Valda           | 101  | 98     | 99   | 102                 | 110       | 102  | 107  |
| TCG-Heartland      | 101  | 97     | 97   | 95                  | 98        | 98   | 98   |
| TCG-Spitfire       | 112  | 110    | 111  | 109                 | 113       | 110  | 107  |
| TCG-Wildcat        | 115  | 112    | 112  | 96                  | 103       | 103  | 104  |
| WB9479             | 100  | 96     | 96   | 92                  | 94        | 98   | 98   |
| WB9590             | 107  | 98     | 99   | 98                  | 99        | 100  | 103  |
|                    |      |        |      |                     |           |      |      |
| Mean (Bu/Acre)     | 58.8 | 50.5   | 50.4 | 72.7                | 82.7      | 76.8 | 77.0 |
| LSD (0.10)         | 18.9 | 10.9   | 7.6  | 6.6                 | 11.8      | 6.0  | 3.6  |
|                    |      |        |      |                     |           | _    |      |

 Table 5. Relative grain yield of hard red spring wheat varieties in southern Minnes

 2022).

1 2022 was abandoned due to early season flooding. 2 year datat is 2020-2021

2 2021 Waseca was discarded due to excessive within trial variation. 2 year is the mean of 2020 and 2022.

## ota locations in single-year (2022) and multiple-year comparisons (2020-

| <br>La     | mbert | on   |            | Morris    |           |   | ç    | St. Pau | 1          | • | Was       | eca <sup>2</sup> |
|------------|-------|------|------------|-----------|-----------|---|------|---------|------------|---|-----------|------------------|
| 2022       | 2 Yr  | 3 Yr | 2022       | 2 Yr      | 3 Yr      |   | 2022 | 2 Yr    | 3 Yr       | • | 2022      | 2 Yr             |
| 114        | 110   | 99   | 118        | 111       | 109       |   | 108  | 98      | 97         |   | 101       | 103              |
| 100        | 99    | 101  | 115        | 103       | 104       |   | 80   | 94      | 100        |   | 110       | 113              |
| 99         | 101   | 101  | 94         | 99        | 104       |   | 96   | 100     | 97         |   | 103       | 101              |
| 111        | 101   | -    | 133        | 124       | -         |   | 97   | 99      | -          |   | 123       | -                |
| 88         | 89    | 94   | 95         | 98        | 98        |   | 88   | 94      | 95         |   | 96        | 95               |
| 114        | 107   | -    | 133        | 130       | -         |   | 110  | 108     | -          |   | 115       | -                |
| 109        | 104   | _    | 118        | 110       | _         |   | 113  | 111     | _          |   | 99        | _                |
| 93         | -     | _    | 106        | -         | _         |   | 87   | -       | _          |   | 104       | _                |
| 116        | 118   | _    | 96         | 115       | _         |   | 93   | 92      | _          |   | 112       | _                |
| 90         | 100   | _    | 76         | 100       | _         |   | 92   | 91      |            |   | 101       | _                |
| 90         | 100   | _    | 114        | 119       | _         |   | 97   | 102     | _          |   | 98        | _                |
| 101        | 100   | 100  | 107        | 101       | 100       |   | 108  | 102     | 103        |   | 108       | 101              |
| 101        | 100   | 105  | 89         | 93        | 96        |   | 116  | 97      | 92         |   | 85        | 87               |
| 106        | -     | -    | 84         | -         | -         |   | 75   | -       | 92         |   | 74        | -                |
|            | 113   | 112  |            |           |           |   | 122  | 112     |            |   | 96        | 103              |
| 107<br>111 | 113   | 112  | 111<br>110 | 108<br>88 | 108<br>96 |   | 122  | 112     | 107<br>109 |   | 96<br>112 | 103              |
|            |       |      |            |           |           |   |      |         |            |   |           | 104              |
| 105        | 101   | 104  | 105        | 106       | 106       |   | 113  | 99      | 101        |   | 104       |                  |
| 90         | 93    | 96   | 107        | 104       | 109       |   | 110  | 113     | 110        |   | 112       | 117              |
| 92         | 94    | 94   | 99         | 99        | 101       |   | 102  | 108     | 104        |   | 106       | 104              |
| 99         | -     | -    | 112        | -         | -         |   | 117  | -       | -          |   | 97        | -                |
| 104        | 103   | 108  | 99         | 97        | 104       |   | 100  | 105     | 103        |   | 111       | 116              |
| 106        | 104   | 104  | 116        | 93        | 101       |   | 137  | 126     | 123        |   | 111       | 113              |
| 106        | _     | _    | 107        | -         | -         |   | 99   | -       | _          |   | 120       | _                |
| 110        | 114   | 117  | 112        | 118       | 124       |   | 100  | 110     | 107        |   | 116       | 123              |
| 97         | 95    | 94   | 96         | 93        | 93        |   | 109  | 105     | 102        |   | 90        | 87               |
| 87         | 89    | 95   | 94         | 98        | 104       |   | 89   | 97      | 99         |   | 111       | 104              |
| 106        | 101   | 105  | 92         | 98        | 102       |   | 64   | 87      | 92         |   | 105       | 100              |
| 103        | 100   | 101  | 100        | 105       | 102       |   | 101  | 101     | 96         |   | 84        | 97               |
| 94         | 97    | 99   | 92         | 82        | 85        |   | 126  | 121     | 116        |   | 99        | 103              |
| 113        | -     | -    | 113        | -         | -         |   | 121  | -       | -          |   | 116       | -                |
| 103        | 102   | -    | 87         | 94        | -         | l | 116  | 115     | -          |   | 104       | -                |
| 81         | 89    | 91   | 68         | 79        | 87        |   | 78   | 90      | 99         |   | 78        | 92               |
| 97         | 97    | 98   | 104        | 103       | 105       |   | 111  | 106     | 104        |   | 105       | 105              |
| 93         | -     | -    | 95         | -         | -         |   | 121  | _       | -          |   | 98        | _                |
| 105        | 101   | 107  | 118        | 119       | 115       |   | 96   | 92      | 97         |   | 92        | 96               |
| 110        | 106   | 104  | 96         | 103       | 107       |   | 107  | 112     | 105        |   | 95        | 96               |
| 97         | 99    | 97   | 99         | 96        | 95        |   | 103  | 96      | 97         |   | 106       | 97               |
| 89         | 98    | 103  | 89         | 101       | 99        |   | 98   | 81      | 83         |   | 77        | 76               |
| 101        | 100   | 94   | 96         | 89        | 90        |   | 104  | 98      | 100        |   | 78        | 84               |
| 100        | 102   | 101  | 102        | 100       | 101       |   | 115  | 108     | 103        |   | 106       | 107              |
| 88         | 93    | 94   | 86         | 87        | 87        |   | 107  | 99      | 99         |   | 105       | 104              |
| 111        | 115   | 119  | 108        | 106       | 114       |   | 110  | 102     | 100        |   | 108       | 100              |
| 104        | 109   | 109  | 123        | 114       | 111       |   | 92   | 100     | 100        |   | 104       | 102              |
| 99         | 93    | 92   | 93         | 89        | 90        |   | 105  | 99      | 97         |   | 102       | 102              |
| 88         | 96    | 99   | 98         | 92        | 94        |   | 112  | 104     | 105        |   | 100       | 103              |
|            |       |      |            |           |           |   |      |         |            |   |           |                  |
| 60.3       | 60.1  | 60.8 | 57.0       | 55.8      | 52.6      |   | 52.4 | 50.5    | 58.8       |   | 38.1      | 42.2             |
| 12.8       | 7.0   | 5.9  | 18.4       | 13.2      | 8.6       |   | 15.8 | 12.2    | 7.8        |   | 13.9      | 6.7              |

Continued on next page ->

| year (2022) and ma           | nupie-      | State       |             |   | 2020-2      | North       |             |             | South       |             |
|------------------------------|-------------|-------------|-------------|---|-------------|-------------|-------------|-------------|-------------|-------------|
| Entry                        | 2022        | 2 Yr        | 3 Yr        | • | 2022        | 2 Yr        | 3 Yr        | 2022        | 2 Yr        | 3 Yr        |
| AP Gunsmoke CL2              | 100         | 101         | 101         |   | 97          | 100         | 101         | 107         | 104         | 102         |
| AP Murdock                   | 103         | 98          | 102         |   | 104         | 99          | 102         | 100         | 98          | 101         |
| AP Smith                     | 98          | 100         | 99          |   | 98          | 99          | 99          | 98          | 100         | 100         |
| Ascend-SD                    | 109         | 106         | _           |   | 107         | 104         | -           | 114         | 110         | -           |
| Bolles                       | 92          | 93          | 93          |   | 92          | 93          | 93          | 92          | 93          | 94          |
| CAG Justify                  | 108         | 106         | -           |   | 106         | 105         | -           | 113         | 108         | -           |
| CAG Reckless                 | 102         | 103         | _           |   | 99          | 102         | -           | 107         | 105         | -           |
| CAG Recoil                   | 98          | _           | _           |   | 99          | -           | -           | 96          | _           | _           |
| CP3099A                      | 111         | 110         | -           |   | 114         | 113         | -           | 104         | 106         | -           |
| CP3119A                      | 98          | 104         | -           |   | 99          | 104         | _           | 95          | 102         | -           |
| CP3188                       | 99          | 104         | -           |   | 99          | 102         | -           | 100         | 107         | -           |
| CP3530                       | 104         | 101         | 102         |   | 104         | 100         | 101         | 105         | 103         | 103         |
| CP3915                       | 101         | 98          | 98          |   | 102         | 99          | 99          | 99          | 97          | 96          |
| CPX39120                     | 88          | -           | -           |   | 86          | -           | -           | 91          | -           | -           |
| Driver                       | 106         | 106         | 105         |   | 105         | 105         | 105         | 108         | 107         | 105         |
| Dyna-Gro Ambush              | 105         | 102         | 103         |   | 104         | 102         | 103         | 108         | 103         | 104         |
| ,<br>Dyna-Gro Ballistic      | 100         | 101         | 103         |   | 99          | 100         | 103         | 102         | 101         | 104         |
| Dyna-Gro Commander           | 100         | 101         | 102         |   | 99          | 100         | 100         | 101         | 104         | 106         |
| Lang-MN                      | 98          | 97          | 98          |   | 98          | 97          | 98          | 97          | 98          | 98          |
| LCS Ascent                   | 103         | -           | -           |   | 101         | -           | -           | 107         | -           | -           |
| LCS Buster                   | 106         | 105         | 109         |   | 107         | 106         | 109         | 105         | 105         | 107         |
| LCS Cannon                   | 105         | 103         | 103         |   | 100         | 101         | 100         | 114         | 108         | 109         |
| LCS Dual                     | 102         | -           | -           |   | 99          | -           | -           | 107         | -           | -           |
| LCS Trigger                  | 112         | 109         | 113         |   | 115         | 108         | 112         | 107         | 112         | 115         |
| Linkert                      | 93          | 94          | 93          |   | 91          | 92          | 92          | 97          | 96          | 96          |
| MN-Rothsay                   | 102         | 103         | 104         |   | 106         | 105         | 105         | 95          | 98          | 101         |
| MN-Torgy                     | 100         | 100         | 102         |   | 101         | 100         | 102         | 96          | 100         | 102         |
| MN-Washburn                  | 99          | 98          | 97          |   | 100         | 98          | 96          | 98          | 99          | 99          |
| MS Barracuda                 | 97          | 98          | 98          |   | 94          | 97          | 97          | 103         | 100         | 101         |
| MS Charger                   | 110         | -           | -           |   | 107         | -           | -           | 115         | -           | -           |
| MS Cobra                     | 98          | 99          | -           |   | 96          | 98          | -           | 102         | 102         | -           |
| MS Ranchero                  | 92          | 96          | 99          |   | 97          | 99          | 102         | 81          | 90          | 94          |
| ND Frohberg                  | 94          | 97          | 97          |   | 91          | 95          | 95          | 100         | 101         | 102         |
| ND Heron                     | 97          | -           | -           |   | 96          | -           | -           | 100         | -           | -           |
| Prosper                      | 103         | 103         | 105         |   | 103         | 103         | 105         | 102         | 103         | 105         |
| Shelly                       | 103         | 103         | 103         |   | 105         | 103         | 103         | 100         | 102         | 103         |
| SY 611 CL2                   | 103         | 102         | 101         |   | 103         | 102         | 102         | 102         | 100         | 98          |
| SY Longmire                  | 93          | 95          | 94          |   | 95          | 96          | 95          | 89          | 93          | 93          |
| SY McCloud                   | 98          | 98          | 97          |   | 98          | 99          | 98          | 99          | 96          | 95          |
| SY Valda                     | 104         | 103         | 104         |   | 104         | 103         | 104         | 106         | 103         | 103         |
| TCG-Heartland                | 92          | 92          | 94          |   | 89          | 91          | 94          | 97          | 95          | 96          |
| TCG-Spitfire                 | 104         | 105         | 105         |   | 101         | 103         | 103         | 111         | 109         | 109         |
| TCG-Wildcat                  | 103         | 103         | 103         |   | 102         | 101         | 102         | 107         | 106         | 105         |
| WB9479                       | 97          | 95          | 96          |   | 96          | 95          | 97          | 98          | 95          | 95          |
| WB9590                       | 101         | 99          | 101         |   | 101         | 99          | 102         | 100         | 98          | 100         |
| Moon (Bu (Acro)              | 72.0        | 60.0        | 60.0        |   | 9E 6        | 70.2        | 77 2        | E0 0        | E7 0        | E0.0        |
| Mean (Bu/Acre)<br>LSD (0.10) | 73.9<br>3.1 | 69.8<br>2.2 | 69.9<br>1.6 |   | 85.6<br>3.6 | 79.2<br>2.6 | 77.3<br>2.0 | 58.2<br>5.3 | 57.2<br>3.7 | 59.9<br>2.6 |
| No. Environments             | 14          | 2.2         | 42          |   | 8           | 2.0<br>16   | 2.0         | 6           | 12          | 2.0<br>18   |
| NO. LINI UNITETILS           | 14          | 20          | 74          |   | 0           | 10          | 24          | 0           | 14          | 10          |

### Table 6. Relative grain yield of hard red spring wheat varieties in Minnesota in singleyear (2022) and multiple-year comparisons (2020-2022).

| North South | Ester       | AP Gunsmoke CL2 | AP Murdock | AP Smith | Ascend-SD | Bolles | CAG Justify | CAG Reckless | CAG Recoil    | CP3U99A | CP3119A | CP3100 | CP3915 | CPX39120 | Driver | Dyna-Gro Ambush | Dyna-Gro Ballistic | Lang-MN       | LCS Ascent | LCS Buster | LCS Cannon | LCS Dual      | Linkert | MN-Rothsay | MN-Torgy | MN-Washburn | MS Gharger     | MS Cobra | MS Ranchero | ND Frohberg | ND Heron    | Shelly       | SY 611 CL2 | SY Longmire | SY McCloud | SY Valda | TCG-Heartland | TCG-Wildcat | WB9479 | WB9590 | Mean (Bu/Acre) | LSD (0.10)        |
|-------------|-------------|-----------------|------------|----------|-----------|--------|-------------|--------------|---------------|---------|---------|--------|--------|----------|--------|-----------------|--------------------|---------------|------------|------------|------------|---------------|---------|------------|----------|-------------|----------------|----------|-------------|-------------|-------------|--------------|------------|-------------|------------|----------|---------------|-------------|--------|--------|----------------|-------------------|
|             | 20          | 86.6            | 93.4       | 85.2     | 94.4      | 82.7   | 94.8        | 86.4         | 86.0          | TUP'T   | 0.2 R   | 7 CG   | 86.6   | 61.2     | 97.1   | 85.6            | 85.9               | 90.0          | 91.3       | 94.2       | 90.5       | 100 4         | 84.9    | 94.6       | 92.3     | 86.4        | 87.1<br>100.3  | 88.3     | 79.9        | 84.5        | 90.0        | 95.4         | 90.6       | 79.4        | 92.0       | 85.1     | 76.2          | 95.9        | 84.9   | 89.1   | 88.4           | 6.2               |
|             | 2022<br>7nt | 103.3           | 108.4      | 97.7     | 104.2     | 95.5   | 108.5       | 94.1         | 95.3          | 10.2    | 104.2   | 102 2  | 103.1  | 92.4     | 103.1  | 101.0           | 99.5               | 08 5<br>101.0 | 104.8      | 107.6      | 102.8      | 98.8<br>111 2 | 93.4    | 106.8      | 101.6    | 100.0       | 104.0<br>108.9 | 98.0     | 85.2        | 90.7        | 94.6        | 105.2        | 102.1      | 92.0        | 100.8      | 102.1    | 92.8          | 107.6       | 97.1   | 105.4  | 100.5          | 5.3               |
| North       | 2-y         | 81.6            | 81.6       | 78.4     | 83.5      | 76.8   | 83.3        | 83.5         | р<br>2 I<br>1 | 90.0    | 86.4    | 01.L   | 76.7   |          | 85.8   | 83.3            | 79.8               | 80 0          | 1          | 83.3       | 82.8       | 87 N          | 78.4    | 87.3       | 82.1     | 79.4        | - 18.9         | 82.1     | 82.2        | 82.1        | 1 1         | /9.0<br>84.5 | 81.5       | 74.5        | 85.8       | 80.4     | 200 1         | 83.5        | 77.5   | 81.8   | 81.4           | 4.8               |
| rth         | 2-year      | 93.4            | 89.8       | 85.7     | 95.5      | 85.2   | 98.6        | 88.0         |               | 102.2   | 102.6   | 97.9   | 92.2   | ı.       | 95.6   | 89.7            | 93.4               | 92.0          | 1          | 97.7       | 92.6       | 0 7 P         | 81.5    | 92.8       | 87.6     | 87.3        | -              | 89.2     | 83.4        | 85.8        |             | 94.4<br>94.7 | 90.9       | 84.4        | 86.9       | 93.1     | 84.1<br>04 7  | 94.6        | 85.2   | 94.2   | 90.6           | 4.1               |
|             |             | 81.4            | 82.6       | 78.9     | ı         | 76.0   | ı           | ı            | I             | I       | I       | 70 0   | 80.4   |          | 83.1   | 81.4            | 83.0               | 79 9          | 1          | 85.5       | 80.1       | - A           | 76.2    | 86.2       | 82.3     | 75.1        | -              | I        | 82.8        | 79.3        | 2 1         | 81.9         | 81.7       | 74.1        | 82.2       | 79.8     | 76.4          | 83.5        | 77.8   | 83.2   | 80.3           | , ω.5             |
|             | 3-year      | 90.4            | 90.4       | 82.8     | ı.        | 81.1   | ı           | I            | I             | I       | I       | 8 I    | 90.3   | ı.       | 88.1   | 85.3            | 89.3               | 83 Q          | 1          | 94.0       | 87.9       | 97 g          | 80.8    | 89.0       | 85.4     | 88.3        | -<br>ع.ل       | I        | 81.5        | 81.7        | 2           | 92.6         | 88.3       | 82.9        | 83.9       | 90.2     | 83.6          | 91.5        | 82.6   | 91.9   | 86.7           | 3.4               |
|             | 2022        | 68.0            | 62.8       | 56.5     | 71.4      | 53.8   | 72.2        | 66.4         | 58.3          | 02.3    | 49.0    | 50 D   | 57.2   | 55.8     | 63.8   | 64.6            | 61.4               | лл<br>Л       | 61.7       | 59.6       | 65.1       | 67.0          | 56.4    | 52.9       | 58.2     | 59.4        | 54. b          | 55.9     | 44.0        | 58.7        | 55.1        | 60.8         | 57.4       | 52.1        | 58.0       | 59.2     | 51.2          | 66.4        | 56.3   | 54.5   | 58.7           | , <del>4</del> .3 |
|             | 22<br>Tert  | 71.9            | 65.3       | 65.0     | 75.3      | 60.1   | 68.4        | 68.1         | 61.2          | 00./    | 58.4    |        | 64.9   | 62.7     | 68.1   | 72.9            | 67.5               | 62.5          | 71.9       | 69.0       | 69.9       | 75 A          | 64.1    | 60.8       | 66.1     | 67.3        | 73.0           | 62.5     | 60.8        | 65.6        | 65.4        | 64.6         | 64.3       | 52.5        | 65.4       | 72.3     | 61.2<br>60 6  | 75.4        | 64.4   | 66.4   | 65.7           | 4.3               |
| South       | 2-y         | 64.2            | 58.7       | 58.1     | 67.3      | 54.1   | 68.5        | 62.2         | 2 I           | D/.4    | 58.1    |        | 56.9   | ı.       | 64.1   | 55.4            | 59.9               | 57.2          | 1          | 58.2       | 57.1       | - 7A          | 54.7    | 54.1       | 57.5     | 59.4        | - 4.10         | 56.7     | 48.9        | 57.9        | ו נ<br>ד    | 60.6         | 56.7       | 57.8        | 54.8       | 58.7     | 52.2          | 64.8        | 52.8   | 54.6   | 58.0           | 4.0               |
| ith         | 2-year      | 71.2            | 63.4       | 66.5     | 72.9      | 60.7   | 69.3        | 64.6         | L C           | /0. I   | 68.0    | C C 2  | 66.3   | ı        | 66.9   | 68.6            | 67.2               | 639           | 1          | 73.8       | 70.8       | -<br>76 4     | 65.2    | 64.7       | 66.4     | 66.7        | -              | 64.6     | 62.3        | 63.8        | L<br>L<br>L | 69.0         | 65.0       | 60.8        | 64.5       | 72.1     | 65.1          | 69.2        | 63.6   | 63.4   | 66.5           | 3.9               |
|             | 3-y         | 58.8            | 58.1       | 57.8     | ı         | 54.4   | ı           | I            | I             | ı       | I       |        | 57.2   |          | 62.4   | 55.8            | 59.7               | 55 D          | 1          | 60.4       | 58.1       | -<br>8 7      | 53.1    | 56.4       | 58.9     | 57.7        | -<br>0.70      | I        | 50.6        | 57.9        | )<br>}      | 59.9         | 54.8       | 57.4        | 52.4       | 57.2     | <u>51.4</u>   | 62.3        | 51.8   | 54.9   | 56.8           | 2.8               |
|             | year<br>Tnt | 64.8            | 60.6       | 61.4     | ı.        | 59.2   | ı           | I            | I             | I       | I       | 5      | 62.8   | I.       | 62.8   | 64.0            | 66.0               | 61 3          | 1          | 70.2       | 66.2       | -<br>74 8     | 60.5    | 61.0       | 61.9     | 61.9        | -              | I        | 56.9        | 61.0        | 5<br>1      | 63.0         | 60.7       | 59.0        | 58.7       | 66.0     | 58.9          | 65.3        | 58.5   | 60.8   | 62.1           | 2.9               |
|             | 2022        | 77.3            | 78.1       | 70.8     | 82.9      | 68.2   | 83.5        | 76.4         | 72.2          | 04.2    | 67.3    | 70.7   | 71.9   | 58.5     | 80.5   | 75.1            | 73.7               | 73.1          | 76.5       | 76.9       | 77.8       | 8 (8<br>8 (8  | 70.6    | 73.7       | 75.2     | 72.9        | 83.3           | 72.1     | 62.0        | 71.6        | 72.5        | /4.0<br>78.1 | 74.0       | 65.8        | 75.0       | 72.1     | 63.7<br>76.3  | 81.1        | 70.6   | 71.8   | 73.6           | 3.9               |
|             | 2<br>Trit   | 87.6            | 86.8       | 81.3     | 89.7      | 77.8   | 88.4        | 81.1         | 78.2          | 92.4    | 81.3    | 00.0   | 84.0   | 77.6     | 85.6   | 86.9            | 83.5               | 80 6          | 88.3       | 88.3       | 86.4       | 93.3<br>93.4  | 78.8    | 83.8       | 83.8     | 83.6        | 90.9           | 80.2     | 73.0        | 78.2        | 80.0        | 85.6         | 83.2       | 72.3        | 83.1       | 87.2     | 77.0<br>Об л  | 91.5        | 80.8   | 85.9   | 83.1           | 3.4               |
| Stat        | 2-ye        | 72.9            | 70.1       | 68.2     | 75.4      | 65.4   | 75.9        | 72.8         |               | 0.6/    | 72.3    | 70 n   | 66.8   |          | 75.0   | 69.3            | 69.8               | 67 9          | 1          | 70.8       | 70.0       | -<br>76 4     | 66.5    | 70.7       | 69.8     | 69.4        | -              | 69.4     | 65.5        | 70.0        | ,<br>1      | 72.5         | 69.1       | 66.1        | 70.3       | 69.6     | 63.9          | 74.1        | 65.2   | 68.2   | 69.7           | ° 3.1             |
| te          | 2-year      | 82.3            | 76.6       | 76.1     | 84.2      | 72.9   | 84.0        | 76.3         | B I           | 90.2    | 85.3    | 75 0   | 79.3   | I        | 81.2   | 79.2            | 80.3               | 74.9          | 1          | 85.7       | 81.7       | 7 78          | 73.4    | 78.8       | 77.0     | 77.0        |                | 76.9     | 72.9        | 74.8        | 3           | 81.8         | 77.9       | 72.6        | 75.7       | 82.6     | 02 л          | 81.9        | 74.4   | 78.8   | 78.5           | 2.8               |
|             | 3-year      | 70.1            | 70.3       | 68.4     | ı.        | 65.2   | ī           | ī            | ı             | ı       | I       | 0 13   | 68.8   |          | 72.8   | 68.6            | 71.4               | 67 5          | 1          | 73.0       | 69.1       | -<br>77 q     | 64.7    | 71.3       | 70.6     | 66.4        | - 104.5        | I        | 66.7        | 68.6        |             | 70.9         | 68.3       | 65.7        | 67.3       | 68.5     | 63.9          | 72.9        | 64.8   | 69.0   | 68.5           | 2.3               |
|             | ear<br>Trt  | 77.6            | 75.5       | 72.1     | ı         | 70.1   | I           | I            | I             | I       | I       |        | 76.6   | ı.       | 75.5   | 74.6            | 77.6               | 72 6          | 1          | 82.1       | 77.1       | 83 Q          | 70.7    | 75.0       | 73.7     | 75.1        | - 11./         | I        | 69.2        | 71.4        | B           | 77.8         | 74.5       | 70.9        | 71.3       | 78.1     | 71.2          | 78.4        | 70.6   | 76.4   | 74.4           | 2.2               |

MWRPC 2022 Research Review Page 85

| Variety                     | Origin <sup>1</sup>   | Year of Release    | PVP status           | Heading (DAP)         | Height (inches)                 | Stem<br>Breakage (%) |
|-----------------------------|-----------------------|--------------------|----------------------|-----------------------|---------------------------------|----------------------|
| 2-row                       |                       |                    |                      |                       |                                 |                      |
| AAC Connect                 | AAFC                  | 2017               | Yes                  | 58                    | 25                              | 8                    |
| AACSynergy                  | AAFC                  | 2012               | Yes                  | 59                    | 26                              | 6                    |
| ABI Cardinal                | ABI                   | 2021               | Yes                  | 59                    | 25                              | 16                   |
| Brewski                     | ND                    | 2019               | NA                   | 58                    | 26                              | 14                   |
| Conlon                      | ND                    | 1996               | Yes                  | 54                    | 26                              | 43                   |
| ND Genesis                  | ND                    | 2015               | Yes                  | 57                    | 28                              | 18                   |
| Pinnacle                    | ND                    | 2007               | Yes                  | 56                    | 26                              | 24                   |
| 6-row                       |                       |                    |                      |                       |                                 |                      |
| Lacey                       | MN                    | 2000               | Yes                  | 55                    | 27                              | 0                    |
| Quest                       | MN                    | 2010               | Yes                  | 55                    | 29                              | 47                   |
| Rasmusson                   | MN                    | 2008               | Yes                  | 54                    | 26                              | 2                    |
| Robust                      | MN                    | 1984               | Expired              | 55                    | 29                              | 5                    |
| Tradition                   | ABI                   | 2003               | Yes                  | 54                    | 27                              | 0                    |
| No. of Environn             | nents                 |                    |                      | 8                     | 8                               | 7                    |
| <sup>1</sup> Agriculture an | d Agri-Food Canada (A | AAFC), Anheuser-Bu | sch InBev (ABI), Nor | th Dakota State Unive | rsity (ND), University of Minne | esota (MN)           |

#### Table 8. Agronomic characteristics of malting barley varieties, 2020-2022.

| Variety                      | DON <sup>1, 2</sup>  | Spot Blotch <sup>1,3</sup> | Net Blotch <sup>1,4</sup> | Stem Rust <sup>1,5</sup> | Bacterial Leaf<br>Streak <sup>1</sup> |
|------------------------------|----------------------|----------------------------|---------------------------|--------------------------|---------------------------------------|
| 2-row                        |                      |                            |                           |                          |                                       |
| AAC Connect                  | 5                    | 1                          | 1                         | 4                        | 3                                     |
| AAC Synergy                  | 8                    | 2                          | 1                         | 5                        | 3                                     |
| ABI Cardinal                 | 7                    | 5                          | 2                         | 5                        | 5                                     |
| Brewski                      | 6                    | 3                          | 6                         | 4                        | 4                                     |
| Conlon                       | 3                    | 9                          | 2                         | 3                        | 6                                     |
| ND Genesis                   | 5                    | 3                          | 2                         | 6                        | 5                                     |
| Pinnacle                     | 5                    | 6                          | 9                         | 6                        | 6                                     |
| 6-row                        |                      | •<br>•                     | •<br>•                    |                          |                                       |
| Lacey                        | 7                    | 1                          | 2                         | 4                        | 5                                     |
| Quest                        | 5                    | 6                          | 2                         | 4                        | 6                                     |
| Rasmusson                    | 9                    | 1                          | 2                         | 5                        | 5                                     |
| Robust                       | 7                    | 1                          | 2                         | 4                        | 5                                     |
| Tradition                    | 4                    | 2                          | 1                         | 5                        | 6                                     |
| No. of<br>environments       | 4                    | 1                          | 2                         | 3                        | 3                                     |
| _                            | d on a scale from 0- |                            | -                         |                          | -                                     |
| <sup>2</sup> Deoxynivalen    | ol (DON) is the myco | otoxin produced by         | the Fusarium head         | l blight pathogen        |                                       |
| <sup>3</sup> Data is for 202 | 20 only              |                            |                           |                          |                                       |
| <sup>4</sup> Data for 2020   | and 2022 only.       |                            |                           |                          |                                       |

### Table 9. Disease reactions of barley varieties in multiple year comparisons.

Data for 2020 and 2022 only.

<sup>5</sup>Data is for stem rust pathogen QCCJ. All lines were resistant to stem rust pathogen MCCF in years tested.

|                   | Croo | kston             | Hall | ock  | Ok   | lee  | Pe   | rley | Ro   | seau              | Ste  | phen | Strathcona        |
|-------------------|------|-------------------|------|------|------|------|------|------|------|-------------------|------|------|-------------------|
| Variety           | 2022 | 2 yr <sup>1</sup> | 2022 | 3 yr | 2022 | 3 yr | 2022 | 3 yr | 2022 | 2 yr <sup>1</sup> | 2022 | 3 yr | 2 yr <sup>2</sup> |
| 2-row             |      |                   |      |      |      |      |      |      |      |                   |      |      |                   |
| AAC Connect       | 102  | 103               | 107  | 109  | 92   | 95   | 101  | 105  | 99   | 98                | 113  | 103  | 131               |
| AACSynergy        | 107  | 103               | 107  | 106  | 102  | 103  | 113  | 105  | 97   | 99                | 120  | 113  | 125               |
| ABI Cardinal      | 79   | 94                | 104  | 109  | 105  | 101  | 105  | 100  | 96   | 100               | 108  | 98   | 126               |
| Brewski           | 109  | 106               | 106  | 106  | 112  | 111  | 98   | 96   | 108  | 107               | 110  | 99   | 76                |
| Conlon            | 87   | 85                | 94   | 95   | 91   | 91   | 86   | 89   | 97   | 100               | 82   | 100  | 67                |
| ND Genesis        | 116  | 112               | 109  | 99   | 98   | 104  | 104  | 110  | 107  | 106               | 116  | 106  | 89                |
| Pinnacle          | 91   | 99                | 91   | 96   | 108  | 105  | 99   | 105  | 112  | 112               | 97   | 104  | 110               |
| 6-row             |      |                   |      |      |      |      |      |      |      |                   |      |      |                   |
| Lacey             | 98   | 99                | 88   | 86   | 92   | 97   | 89   | 93   | 98   | 99                | 80   | 95   | 97                |
| Quest             | 106  | 101               | 95   | 89   | 105  | 99   | 100  | 96   | 90   | 86                | 89   | 93   | 101               |
| Rasmusson         | 111  | 108               | 97   | 103  | 102  | 99   | 102  | 98   | 104  | 106               | 96   | 90   | 111               |
| Robust            | 96   | 95                | 98   | 95   | 93   | 91   | 97   | 95   | 96   | 90                | 96   | 100  | 79                |
| Tradition         | 96   | 94                | 104  | 107  | 100  | 104  | 104  | 108  | 97   | 95                | 94   | 99   | 88                |
| Mean<br>(bu/acre) | 102  | 95                | 120  | 106  | 108  | 97   | 122  | 110  | 132  | 103               | 103  | 99   | 74                |
| LSD( 0.05)        | 20.7 | 19.1              | 11.1 | 14   | 17.1 | 11.5 | 11.2 | 14.6 | 14.4 | 10.5              | 10.9 | 19.7 | 51.5              |

# Table 10. Relative grain yield (percent of the mean of the trial) of barley varieties in northern Minnesota locations in single-year (2022) and multiple year comparisons (2020-2022).

<sup>2</sup>Trial data is from 2021 and 2020 only

# Table 11. Relative grain yield (percent of the mean of the trial) of barley varieties in southern Minnesota locations in single-year (2022) and multiple year comparisons (2020-2022).

|                                | Be        | cker              | Ferg | us Falls | Lambe | rton | Le Ce | enter | New  | Ulm  | Roche | ester | St. P | aul  |
|--------------------------------|-----------|-------------------|------|----------|-------|------|-------|-------|------|------|-------|-------|-------|------|
| Variety                        | 2022      | 2 yr <sup>1</sup> | 2022 | 3 yr     | 2022  | 3 yr | 2022  | 3 yr  | 2022 | 3 yr | 2022  | 3 yr  | 2022  | 3 yr |
| 2-row                          |           |                   |      |          |       |      |       |       |      |      |       |       |       |      |
| AAC Connect                    | 103       | 99                | 103  | 104      | 95    | 98   | 109   | 104   | 101  | 104  | 97    | 91    | 96    | 105  |
| AAC Synergy                    | 102       | 110               | 100  | 100      | 99    | 104  | 89    | 95    | 108  | 95   | 109   | 103   | 103   | 110  |
| ABI Cardinal                   | 107       | 111               | 88   | 99       | 99    | 96   | 99    | 95    | 97   | 97   | 76    | 78    | 100   | 104  |
| Brewski                        | 106       | 118               | 95   | 104      | 99    | 108  | 100   | 99    | 93   | 96   | 104   | 95    | 111   | 121  |
| Conlon                         | 87        | 81                | 85   | 88       | 76    | 79   | 91    | 94    | 103  | 94   | 76    | 81    | 63    | 69   |
| ND Genesis                     | 88        | 94                | 116  | 105      | 108   | 101  | 93    | 102   | 82   | 98   | 106   | 103   | 102   | 103  |
| Pinnacle                       | 99        | 105               | 107  | 103      | 101   | 97   | 103   | 105   | 100  | 102  | 103   | 106   | 95    | 106  |
| 6-row                          |           |                   |      |          |       |      |       |       |      |      |       |       |       |      |
| Lacey                          | 84        | 86                | 97   | 96       | 103   | 106  | 98    | 99    | 102  | 106  | 109   | 110   | 111   | 102  |
| Quest                          | 112       | 113               | 102  | 97       | 113   | 101  | 104   | 104   | 105  | 101  | 107   | 105   | 92    | 89   |
| Rasmusson                      | 121       | 111               | 113  | 107      | 104   | 111  | 104   | 103   | 105  | 108  | 113   | 118   | 118   | 107  |
| Robust                         | 81        | 76                | 87   | 91       | 96    | 95   | 95    | 92    | 100  | 95   | 99    | 102   | 99    | 88   |
| Tradition                      | 109       | 96                | 107  | 104      | 108   | 106  | 115   | 109   | 104  | 103  | 100   | 107   | 109   | 98   |
| Mean<br>(bu/acre)              | 96        | 65                | 125  | 107      | 70    | 66   | 103   | 93    | 82   | 84   | 82    | 91    | 62    | 69   |
| LSD (0.050                     | 14.3      | 20.8              | 12.9 | 14.7     | 9.7   | 13.1 | 16.5  | 10.6  | 16.1 | 16.8 | 13.1  | 16.8  | 12    | 13.7 |
| <sup>1</sup> Trial data is fro | m 2022 aı | nd 2021 onl       | у    |          |       |      |       |       |      |      |       |       |       |      |

Continued on next page 🛁

Table 12. Relative grain yield (percent of the mean of the trial) of barley varieties in a single-year (2022) and multiple year comparisons (2020-2022).

|              |      | State |      |      | North |      |      | South |      |
|--------------|------|-------|------|------|-------|------|------|-------|------|
| Variety      | 2022 | 2 yr  | 3 yr | 2022 | 2 yr  | 3 yr | 2022 | 2 yr  | 3 yr |
| 2-row        |      |       |      |      |       |      |      |       |      |
| AAC Connect  | 102  | 103   | 103  | 102  | 104   | 105  | 101  | 103   | 101  |
| AAC Synergy  | 104  | 102   | 104  | 107  | 105   | 107  | 101  | 98    | 101  |
| ABI Cardinal | 97   | 99    | 100  | 100  | 101   | 103  | 95   | 95    | 96   |
| Brewski      | 104  | 102   | 103  | 107  | 102   | 102  | 100  | 102   | 104  |
| Conlon       | 87   | 90    | 88   | 90   | 93    | 91   | 85   | 87    | 85   |
| ND Genesis   | 104  | 105   | 103  | 108  | 107   | 104  | 100  | 102   | 102  |
| Pinnacle     | 101  | 103   | 104  | 100  | 103   | 104  | 102  | 104   | 103  |
| 6-row        |      |       |      |      |       |      |      |       |      |
| Lacey        | 95   | 98    | 98   | 91   | 95    | 94   | 99   | 101   | 101  |
| Quest        | 101  | 99    | 98   | 97   | 95    | 94   | 105  | 105   | 101  |
| Rasmusson    | 106  | 106   | 105  | 102  | 102   | 101  | 111  | 109   | 109  |
| Robust       | 95   | 93    | 93   | 96   | 94    | 93   | 93   | 91    | 92   |
| Tradition    | 103  | 101   | 102  | 99   | 98    | 101  | 107  | 103   | 104  |
| Mean         | 101  | 90    | 90   | 113  | 101   | 99   | 90   | 79    | 83   |
| (bu/acre)    | 101  | 90    | 90   | 115  | 101   | 99   | 90   | 79    | 65   |
| LSD(0.05)    | 6.3  | 4.5   | 4.7  | 8.8  | 6.1   | 7.5  | 8    | 6.2   | 5.5  |
| No. of       | 13   | 27    | 38   | 6    | 13    | 18   | 7    | 14    | 20   |
| environments | 15   | 27    | 58   | 0    | 15    | 10   | ,    | 14    | 20   |

# Table 13. Origin and agronomic characteristics of oat varieties in Minnesota in multiple-year comparisons (2020-2022).

| Variety                | Origin         | Year of<br>Release | Legal Status | Seed Color | Days to<br>Heading (days) | Plant Height<br>(inches) | Straw Strength <sup>4</sup><br>(1-9) | Test Weight<br>(lbs/bu) | Grain<br>Protein <sup>5,6 (%)</sup> | Grain Oil <sup>5,6</sup> (%) | Grain Beta-<br>glucan <sup>5,6</sup> (%) |
|------------------------|----------------|--------------------|--------------|------------|---------------------------|--------------------------|--------------------------------------|-------------------------|-------------------------------------|------------------------------|------------------------------------------|
| Antigo                 | WI             | 2017               | PVP(94)      | Yellow     | 53.7                      | 29.2                     | 2                                    | 36.6                    | 14.5                                | 7.3                          | 4.3                                      |
| CS Camden <sup>1</sup> | Meridian Seeds | 2013               | PVP(94)      | White      | 59.8                      | 30                       | 2.1                                  | 31.6                    | 12.4                                | 6.6                          | 4.4                                      |
| Deon                   | MN             | 2014               | PVP(94)      | Yellow     | 59.9                      | 32.8                     | 2.9                                  | 35                      | 12.2                                | 7.1                          | 3.8                                      |
| Esker 2020             | WI             | 2020               | PVP(94)      | Yellow     | 55.4                      | 29.9                     | 2.2                                  | 32.4                    | 12.6                                | 6.2                          | 4.2                                      |
| George <sup>2</sup>    | WI             | 2021               | Pending      | Yellow     | 62.6                      | 33.8                     | 4                                    | 32                      | -                                   | -                            | -                                        |
| Hayden                 | SD             | 2015               | PVP(94)      | White      | 58.6                      | 32.2                     | 2.9                                  | 34.8                    | 11.9                                | 7.3                          | 4.5                                      |
| MN Pearl               | MN             | 2018               | PVP(94)      | White      | 57.8                      | 31.5                     | 4.2                                  | 35                      | 11.2                                | 7.4                          | 4.1                                      |
| ND Heart               | ND             | 2020               | PVP(94)      | White      | 57.9                      | 32                       | 3.5                                  | 34.2                    | 13.9                                | 6.7                          | 5                                        |
| Reins                  | IL             | 2016               | PVP(94)      | White      | 54.1                      | 24.2                     | 0.9                                  | 35.7                    | 13.8                                | 6.3                          | 4.2                                      |
| Rushmore               | SD             | 2020               | PVP(94)      | White      | 56                        | 31                       | 2                                    | 36.4                    | 13.2                                | 6.2                          | 4.1                                      |
| Saddle                 | SD             | 2018               | PVP(94)      | White      | 53.5                      | 27.9                     | 1                                    | 33.5                    | 13.5                                | 5.9                          | 4                                        |
| SD Buffalo             | SD             | 2021               | NA           | White      | 56.5                      | 31.7                     | 2.3                                  | 34.8                    | 12.6                                | 7.2                          | 4.5                                      |
| Shelby 427             | SD             | 2011               | PVP(94)      | White      | 55.1                      | 31.8                     | 2.2                                  | 35.7                    | 12.5                                | 7.2                          | 4.1                                      |
| Streaker <sup>3</sup>  | SD             | 2016               | PVP(94)      | Hulless    | 56.1                      | 31.1                     | 4.2                                  | 44                      | 13.3                                | 7.4                          | 4.2                                      |
| Sumo                   | SD             | 2017               | PVP(94)      | White      | 51.6                      | 29.7                     | 2                                    | 35                      | 14.5                                | 6                            | 3.8                                      |
| Warrior                | SD             | 2019               | PVP(94)      | White      | 56.6                      | 29.5                     | 1.4                                  | 35                      | 12.8                                | 6.5                          | 4.1                                      |
| WIX10305-4             | WI             | 2022               | NA           | Yellow     | 59.8                      | 29.3                     | 1.4                                  | 32                      | 14.6                                | 6.8                          | 4.4                                      |

<sup>17</sup>Line developed by Lantmannen Seed in Sweden.

<sup>2</sup>Line tested in 2021 and 2022

<sup>3</sup>Hulless oat

<sup>4</sup>1-9 scale where 1=most resistant, 9=most susceptible

<sup>5</sup>12% Grain moisture

<sup>6</sup>Trait measured for 3 locations in 2020

## Table 14. Disease characteristics of oat varieties.

|                                                                                                                                                                                                     | Crown Rust2                            | Loose Smut3        | BYDV⁴           |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------|-----------------|--|--|--|--|--|--|--|--|--|
| Variety                                                                                                                                                                                             | (1-9)                                  | (1-9)              | (1-9)           |  |  |  |  |  |  |  |  |  |
| Antigo                                                                                                                                                                                              | 4                                      | 3                  | 4               |  |  |  |  |  |  |  |  |  |
| CS Camden                                                                                                                                                                                           | 5                                      | 2                  | 4               |  |  |  |  |  |  |  |  |  |
| Deon                                                                                                                                                                                                | 5                                      | 1                  | 4               |  |  |  |  |  |  |  |  |  |
| Esker 2020                                                                                                                                                                                          | 4                                      | 1                  | 3               |  |  |  |  |  |  |  |  |  |
| George <sup>1</sup>                                                                                                                                                                                 | 4                                      | 3                  | -               |  |  |  |  |  |  |  |  |  |
| Hayden                                                                                                                                                                                              | 5                                      | 12                 | 3               |  |  |  |  |  |  |  |  |  |
| MN Pearl                                                                                                                                                                                            | 3                                      | 1                  | 4               |  |  |  |  |  |  |  |  |  |
| ND Heart <sup>1</sup> 4         6         4           Reins         5         1         4                                                                                                           |                                        |                    |                 |  |  |  |  |  |  |  |  |  |
| Reins 5 1 4                                                                                                                                                                                         |                                        |                    |                 |  |  |  |  |  |  |  |  |  |
| Rushmore 4 2 4                                                                                                                                                                                      |                                        |                    |                 |  |  |  |  |  |  |  |  |  |
| Saddle                                                                                                                                                                                              | 4                                      | 1                  | 4               |  |  |  |  |  |  |  |  |  |
| SD Buffalo                                                                                                                                                                                          | 3                                      | 2                  | -               |  |  |  |  |  |  |  |  |  |
| Shelby 427                                                                                                                                                                                          | 5                                      | 1                  | 4               |  |  |  |  |  |  |  |  |  |
| Streaker                                                                                                                                                                                            | 4                                      | 3                  | 4               |  |  |  |  |  |  |  |  |  |
| Sumo                                                                                                                                                                                                | 4                                      | 2                  | 4               |  |  |  |  |  |  |  |  |  |
| Warrior                                                                                                                                                                                             | 3                                      | 2                  | 4               |  |  |  |  |  |  |  |  |  |
| WIX10305-4                                                                                                                                                                                          | 4                                      | 2                  | -               |  |  |  |  |  |  |  |  |  |
| <sup>1</sup> Line tested in 2<br><sup>2</sup> Tested in 2020                                                                                                                                        |                                        | with a mixed rac   | e population of |  |  |  |  |  |  |  |  |  |
| <sup>2</sup> Tested in 2020, 2021, and 2022 with a mixed race population of crown rust; 1 = most resistant, 9 = most susceptible. Data is from 2020 and 2022 only; 2021 trial failed due to drought |                                        |                    |                 |  |  |  |  |  |  |  |  |  |
| <sup>3</sup> Tested in 2020 and 2021; 1 = most resistant, 9 = most<br>susceptible. Data based on 2020 trial; 2021 trial had very low                                                                |                                        |                    |                 |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                     | e due to drought<br>; 1 = most resista | int, 9 = most susc | ceptible        |  |  |  |  |  |  |  |  |  |

| Table 15. Relative grain yiel | d of oat varieties in northern Minnesota locations in single-year (2022) and |
|-------------------------------|------------------------------------------------------------------------------|
| multiple-year comparisons     | (2020-2022).                                                                 |

|                                                                                          | Crook | ston |         | Fergu       | s Falls <sup>4</sup> |        | Rosea       | au   | Step  | ohen |
|------------------------------------------------------------------------------------------|-------|------|---------|-------------|----------------------|--------|-------------|------|-------|------|
|                                                                                          | 2022  | 3 yr |         | 2022        | 2 yr                 |        | 2022        | 3 yr | 2022  | 3 yr |
| Variety                                                                                  |       |      |         |             | (¢                   | 6 of m | ean)        |      | <br>- |      |
| Antigo                                                                                   | 88    | 91   |         | 61          | 81                   |        | 82          | 76   | 94    | 87   |
| CS Camden                                                                                | 104   | 112  |         | 112         | 112                  |        | 115         | 104  | 118   | 110  |
| Deon                                                                                     | 109   | 107  |         | 107         | 100                  |        | 112         | 118  | 98    | 108  |
| Esker 2020                                                                               | 107   | 108  |         | 90          | 91                   |        | 112         | 103  | 96    | 97   |
| George <sup>1</sup>                                                                      | 88    | -    |         | 104         | -                    |        | 94          | -    | 98    |      |
| Hayden                                                                                   | 110   | 113  |         | 116         | 113                  |        | 111         | 113  | 106   | 107  |
| MN Pearl                                                                                 | 114   | 113  |         | 124         | 118                  |        | 114         | 113  | 106   | 113  |
| ND Heart                                                                                 | 97    | 102  |         | 94          | 98                   |        | 87          | 92   | 82    | 94   |
| Reins                                                                                    | 98    | 93   |         | 84          | 92                   |        | 94          | 95   | 105   | 97   |
| Rushmore                                                                                 | 104   | 103  |         | 102         | 107                  |        | 113         | 116  | 112   | 115  |
| Saddle                                                                                   | 100   | 93   |         | 93          | 92                   |        | 101         | 102  | 111   | 10:  |
| SD Buffalo                                                                               | 113   | 109  |         | 113         | 111                  |        | 111         | 113  | 113   | 112  |
| Shelby 427                                                                               | 88    | 93   |         | 81          | 93                   |        | 86          | 89   | 97    | 98   |
| Streaker <sup>2</sup>                                                                    | 76    | 73   |         | 89          | 91                   |        | 77          | 76   | 72    | 72   |
| Sumo                                                                                     | 80    | 78   |         | 97          | 80                   |        | 84          | 88   | 97    | 87   |
| Warrior                                                                                  | 113   | 107  |         | 135         | 121                  |        | 97          | 105  | 90    | 98   |
| WIX10305-4                                                                               | 110   | 106  |         | 97          | 100                  |        | 110         | 98   | 105   | 99   |
| Mean<br>(bu/acre)                                                                        | 187   | 157  |         | 135         | 124                  |        | 189         | 136  | 177   | 149  |
| LSD (0.05) <sup>3</sup>                                                                  | 29.8  | 20.2 |         | 27.4        | 24.8                 |        | 28.5        | 21.7 | 30.6  | 24.: |
| <sup>1</sup> Line tested in 2<br><sup>2</sup> Hulless oat<br><sup>3</sup> A large LSD su |       |      | ty fror | n year to y | ear for the          | specif | ic location |      |       |      |

Continued on next page  $\rightarrow$ 

Table 16. Relative grain yield of oat varieties in southern Minnesota locations in single-year (2022) and multiple-year comparisons (2020-2022).

|                             | Bee       | cker <sup>3</sup> |      | Lambe | erton |   | Le C | enter | Roche | ester | St. Paul <sup>4</sup> | Wa   | seca |
|-----------------------------|-----------|-------------------|------|-------|-------|---|------|-------|-------|-------|-----------------------|------|------|
| Variety                     | 2022      | 2 yr              |      | 2022  | 3 yr  |   | 2022 | 3 yr  | 2022  | 3 yr  | 2020                  | 2022 | 3 yr |
| Antigo                      | 110       | 97                |      | 89    | 91    |   | 101  | 101   | 86    | 98    | 85                    | 78   | 85   |
| CS Camden                   | 124       | 118               |      | 106   | 100   |   | 105  | 104   | 84    | 85    | 101                   | 121  | 120  |
| Deon                        | 86        | 90                |      | 118   | 114   |   | 104  | 105   | 115   | 111   | 111                   | 93   | 107  |
| Esker 2020                  | 105       | 108               |      | 109   | 111   |   | 104  | 97    | 115   | 103   | 102                   | 111  | 109  |
| George <sup>1</sup>         | 90        | 100               |      | 103   | -     |   | 86   | -     | 112   | -     | -                     | 103  | -    |
| Hayden                      | 107       | 111               |      | 116   | 103   |   | 113  | 113   | 108   | 112   | 120                   | 92   | 105  |
| MN Pearl                    | 90        | 95                |      | 97    | 108   |   | 97   | 101   | 103   | 102   | 130                   | 104  | 119  |
| ND Heart                    | 87        | 90                |      | 101   | 99    |   | 99   | 98    | 83    | 91    | 92                    | 106  | 88   |
| Reins                       | 102       | 97                |      | 87    | 93    |   | 95   | 97    | 69    | 86    | 103                   | 88   | 97   |
| Rushmore                    | 87        | 92                |      | 95    | 103   |   | 103  | 109   | 107   | 111   | 100                   | 114  | 110  |
| Saddle                      | 110       | 102               |      | 94    | 89    |   | 98   | 100   | 104   | 103   | 98                    | 89   | 79   |
| SD Buffalo                  | 114       | 109               |      | 103   | 112   |   | 101  | 103   | 128   | 117   | 106                   | 100  | 109  |
| Shelby 427                  | 93        | 100               |      | 91    | 86    |   | 96   | 103   | 104   | 106   | 105                   | 81   | 91   |
| Streaker <sup>2</sup>       | 65        | 67                |      | 75    | 73    |   | 81   | 81    | 69    | 73    | 78                    | 82   | 82   |
| Sumo                        | 98        | 97                |      | 93    | 102   |   | 94   | 91    | 91    | 93    | 81                    | 75   | 89   |
| Warrior                     | 118       | 112               |      | 100   | 108   |   | 104  | 97    | 99    | 100   | 114                   | 104  | 98   |
| WIX10305-4                  | 114       | 114               |      | 121   | 109   |   | 121  | 100   | 124   | 107   | 75                    | 157  | 114  |
| Mean<br>(bu/acre)           | 100       | 91                |      | 125   | 114   |   | 136  | 130   | 149   | 137   | 126                   | 80   | 82   |
| LSD (0.05) <sup>5</sup>     | 21.4      | 19.9              |      | 19.4  | 21.1  |   | 27.4 | 16.9  | 28.4  | 22.2  | 13                    | 16.7 | 19.8 |
| <sup>1</sup> Line tested in | 2021 an   | d 2022 onl        | у    |       |       |   |      |       |       |       |                       |      |      |
| <sup>2</sup> Hulless oat    |           |                   |      |       |       |   |      |       |       |       |                       |      |      |
| <sup>3</sup> Location was   | tested in | 2021 and          | 2022 | 2     |       |   |      |       |       |       |                       |      |      |
| <sup>4</sup> Location was   | tested in | 2020 only         | ,    |       |       |   |      |       |       |       |                       |      |      |
|                             |           |                   |      | r     |       | r |      |       |       |       |                       |      |      |

<sup>5</sup>A large LSD suggests large variability from year to year for the specific location

Table 17. Relative grain yield of oat varieties in Minnesota in single-year (2022) and multiple-year comparisons (2020-2022).

|                                                            | N         | orth   |      | So          | uth   |      |      | State |      |
|------------------------------------------------------------|-----------|--------|------|-------------|-------|------|------|-------|------|
|                                                            | 2022      | 2 yr   | 3 yr | 2022        | 2 yr  | 3 yr | 2022 | 2 yr  | 3 yr |
| Variety                                                    |           |        |      | <br>(% of m | nean) |      | <br> |       |      |
| Antigo                                                     | 82        | 83     | 84   | 93          | 94    | 94   | 87   | 88    | 89   |
| CS Camden                                                  | 112       | 111    | 111  | 105         | 104   | 102  | 109  | 108   | 107  |
| Deon                                                       | 107       | 110    | 108  | 105         | 107   | 107  | 106  | 108   | 108  |
| Esker 2020                                                 | 102       | 101    | 100  | 109         | 106   | 105  | 105  | 104   | 102  |
| George <sup>1</sup>                                        | 95        | 98     | -    | 99          | 96    | -    | 97   | 97    | -    |
| Hayden                                                     | 111       | 110    | 112  | 108         | 111   | 110  | 110  | 110   | 111  |
| MN Pearl                                                   | 114       | 114    | 114  | 98          | 102   | 107  | 107  | 108   | 111  |
| ND Heart                                                   | 90        | 94     | 97   | 94          | 93    | 94   | 92   | 94    | 95   |
| Reins                                                      | 96        | 91     | 94   | 87          | 91    | 94   | 92   | 91    | 94   |
| Rushmore                                                   | 108       | 107    | 110  | 101         | 102   | 106  | 105  | 105   | 108  |
| Saddle                                                     | 102       | 98     | 97   | 99          | 95    | 96   | 100  | 97    | 96   |
| SD Buffalo                                                 | 113       | 111    | 111  | 110         | 109   | 110  | 111  | 110   | 110  |
| Shelby 427                                                 | 89        | 92     | 93   | 94          | 99    | 98   | 91   | 95    | 96   |
| Streaker <sup>2</sup>                                      | 78        | 77     | 77   | 74          | 76    | 76   | 76   | 76    | 77   |
| Sumo                                                       | 89        | 88     | 83   | 91          | 92    | 93   | 90   | 90    | 88   |
| Warrior                                                    | 107       | 108    | 107  | 104         | 103   | 103  | 106  | 105   | 105  |
| WIX10305-4                                                 | 106       | 108    | 101  | 125         | 117   | 105  | 115  | 112   | 103  |
| Mean (bu/acre)                                             | 172       | 141    | 141  | 118         | 106   | 113  | 142  | 122   | 126  |
| LSD (0.05)                                                 | 20.3      | 13     | 11   | 16.1        | 10    | 9.2  | 13.4 | 8.5   | 7.3  |
| # of<br>environments                                       | 4         | 8      | 12   | 5           | 10    | 15   | 9    | 18    | 27   |
| <sup>1</sup> Line tested in 20<br><sup>2</sup> Hulless oat | 21 and 20 | 22 onl | у    |             |       |      |      |       |      |

# North Dakota Hard Red Spring Wheat Variety Trial Results for 2022 and Selection Guide

Clair Keene, Andrew Green, Andrew Friskop, Matt Breiland, Tim Friesen, Zhaohui Liu and Shaobin Zhong (NDSU Main Station); John Rickertsen (Hettinger Research Extension Center); Eric Eriksmoen (North Central Research Extension Center, Minot); Bryan Hanson (Langdon Research Extension Center); Glenn Martin (Dickinson Research Extension Center); Gautam Pradhan (Williston Research Extension Center); Mike Ostlie (Carrington Research Extension Center)

Hard red spring (HRS) wheat was planted on 5.4 million acres in 2022, down slightly from 5.5 million in 2021. The average yield of HRS wheat was 52 bushels/acre (bu/a), up substantially from 34 bu/a in 2021. Low 2021 yields were caused by wide-spread and severe drought. The 2022 growing season started with late planting after spring blizzards and heavy rains delayed field work for many across the state.

SY Valda was the most popular HRS wheat variety in 2022, occupying 11.0% of the planted acreage, followed by SY Ingmar (9.4%), AP Murdock (8.8%), WB9590 (8.8%), WB9719 (4.1%), Shelly (3.9%), ND Vitpro (3.0%), Elgin ND (3.0%), and Faller (2.9%). SY Valda, SY Ingmar, and AP Murdock were released by Syngenta/AgriPro. WB9590 and WB9719 were released by Westbred/ Monsanto. Shelly is a University of Minnesota release and ND Vitpro, Elgin, and Faller are NDSU varieties.

Successful wheat production depends on numerous factors, including selecting the right variety for a particular area. The information included in this publication is meant to aid in selecting that variety or group of varieties. Characteristics to consider in selecting a variety may include yield potential, protein content when grown with proper fertility, straw strength, plant height, response to problematic pests (diseases, insects, etc.) and maturity. Every growing season differs; therefore, when selecting a variety, we recommend using data that summarize several years and locations. Choose the variety that, on average, performs the best at multiple locations near your farm during several years.

Selecting varieties with good milling and baking quality also is important to maintain market recognition and avoid discounts. Hard red spring wheat from the northern Great Plains is known around the world for its excellent end-use quality.

Millers and bakers consider many factors in determining the quality and value of wheat they purchase. Several key parameters are: high test weight (for optimum milling yield and flour color), high falling number (greater than 300 seconds indicates minimal sprout damage), high protein content (the majority of HRS wheat export markets want at least 14% protein) and excellent protein quality (for superior bread-making quality as indicated by traditional strong gluten proteins, high baking absorption and large bread loaf volume).

Gluten strength, and milling and baking quality ratings are provided for individual varieties based on the results from the NDSU field plot variety trials in multiple locations in 2021. The wheat protein data often are higher than obtained in actual production fields but can be used to compare relative differences among varieties.

The agronomic data presented in this publication are from replicated research plots using experimental designs that enable the use of statistical analysis. These analyses enable the reader to determine, at a predetermined level of confidence, if the differences observed among varieties are reliable or if they might be due to error inherent in the experimental process.

The LSD (least significant difference) values beneath the columns in the tables are derived from these statistical analyses and apply only to the numbers in the column in which they appear. If the difference between two varieties exceeds the LSD value, it means that with 95% or 90% confidence (LSD probability 0.05 or 0.10), the higher-yielding variety has a significant yield advantage. When the difference between two varieties is less than the LSD value, no significant difference was found between those two varieties under those growing conditions.

NS is used to indicate no significant difference for that trait among any of the varieties at the 95% or 90% level of confidence. The CV stands for coefficient of variation and is expressed as a percentage. The CV is a measure of variability in the trial. Large CVs mean a large amount of variation could not be attributed to differences in the varieties. Yield is reported at 13.5% moisture, while protein content is reported at 12% moisture content.

Presentation of data for the entries tested does not imply approval or endorsement by the authors or agencies conducting the test. North Dakota State University approves the reproduction of any table in the publication only if no portion is deleted, appropriate footnotes are given and the order of the data is not rearranged. Additional data from county sites are available from each Research Extension Center at https://vt.ag.ndsu.edu/.

|                          |                        |          |                       |                       |                   |      | Reactio | n to Disease <sup>5,0</sup> |
|--------------------------|------------------------|----------|-----------------------|-----------------------|-------------------|------|---------|-----------------------------|
|                          | Agent or               | Year     | Height                | Straw                 | Days to           | Leaf | Tan     | Bact. Leaf                  |
| Variety                  | Origin <sup>1</sup>    | Released | (inches) <sup>2</sup> | Strength <sup>3</sup> | Head <sup>4</sup> | Rust | Spot    | Streak                      |
| AAC Brandon              | Canada                 | 2012     | 31                    | 4                     | 49                | 6    | NA      | 6                           |
| AAC Starbuck             | Canada                 | 2018     | 32                    | 4                     | 49                | 6    | NA      | 6                           |
| AAC Wheatland            | Canada                 | 2018     | 31                    | 4                     | 49                | 4    | NA      | 7                           |
| AP Gunsmoke CL2          | Syngenta/AgriPro       | 2021     | 30                    | 6                     | 48                | 3    | 4       | 8                           |
| AP Murdock               | Syngenta/AgriPro       | 2019     | 28                    | 4                     | 49                | 5    | 4       | 6                           |
| AP Smith                 | Syngenta/AgriPro       | 2021     | 28                    | 2                     | 50                | 3    | 3       | 5                           |
| Ascend-SD                | SD                     | 2022     | 34                    | 4                     | 50                | 4    | NA      | 5                           |
| Bolles                   | MN                     | 2015     | 30                    | 4                     | 51                | 2    | 4       | 6                           |
| CAG-Justify              | Champions Alliance Grp | 2021     | 31                    | 6                     | 51                | 2    | 5       | 6                           |
| CAG-Reckless             | Champions Alliance Grp | 2021     | 32                    | 5                     | 49                | 2    | 6       | 6                           |
| CAG-Recoil               | Champions Alliance Grp | 2022     | 29                    | 3                     | 55                | 1    | NA      | 3                           |
| CP3099A                  | Croplan                | 2020     | 32                    | 5                     | 52                | 3    | 4       | 6                           |
| CP3188                   | Croplan                | 2020     | 30                    | 7                     | 49                | 2    | 6       | 7                           |
| CP3530                   | Croplan                | 2015     | 33                    | 7                     | 50                | 5    | 6       | 6                           |
| Dagmar <sup>7</sup>      | MT                     | 2019     | 30                    | 6                     | 47                | 7    | 4       | 7                           |
| Driver                   | SD                     | 2019     | 31                    | 4                     | 50                | 1    | 7       | 7                           |
| Faller                   | ND                     | 2007     | 32                    | 6                     | 50                | 7    | 7       | 5                           |
| Glenn                    | ND                     | 2005     | 33                    | 4                     | 47                | 6    | 6       | 5                           |
| Lanning                  | MT                     | 2017     | 30                    | 3                     | 50                | 7    | 4       | 8                           |
| LCS Ascent               | Limagrain              | 2022     | 30                    | 4                     | 46                | 6    | NA      | 6                           |
| LCS Buster               | Limagrain              | 2020     | 32                    | 5                     | 53                | 4    | 4       | 4                           |
| LCS Cannon               | Limagrain              | 2018     | 29                    | 4                     | 45                | 7    | 5       | 7                           |
| LCS Dual                 | Limagrain              |          | 30                    | 4                     | 48                | 6    | NA      | 7                           |
| LCS Hammer AX            | Limagrain              | 2022     | 29                    | 4                     | 47                | 6    | NA      | 7                           |
| LCS Rebel                | Limagrain              | 2017     | 33                    | 6                     | 46                | 7    | 3       | 5                           |
| LCS Trigger              | Limagrain              | 2016     | 33                    | 5                     | 54                | 1    | 4       | 4                           |
| MN- Rothsay              | MN                     | 2022     | 29                    | 3                     | 51                | 6    | NA      | 6                           |
| MN-Torgy                 | MN                     | 2020     | 31                    | 4                     | 50                | 3    | 3       | 4                           |
| MN-Washburn              | MN                     | 2019     | 30                    | 3                     | 51                | 1    | 6       | 6                           |
| MS Barracuda             | Meridian Seeds         | 2018     | 28                    | 4                     | 45                | NA   | 7       | 7                           |
| MS Charger               | Meridian Seeds         | 2022     | 29                    | 7                     | 47                | 2    | NA      | 7                           |
| MS Cobra                 | Meridian Seeds         | 2022     | 29                    | 4                     | 48                | 2    | 4       | 8                           |
| MS Ranchero              | Meridian Seeds         | 2020     | 32                    | 5                     | 53                | 4    | 5       | 6                           |
| ND Frohberg              | ND                     | 2020     | 33                    | 5                     | 49                | 5    | 8       | 5                           |
| ND Heron                 | ND                     | 2021     | 31                    | 6                     | 46                | 7    | NA      | 7                           |
| ND VitPro                | ND                     | 2016     | 31                    | 4                     | 48                | 4    | 6       | 6                           |
| Shelly                   | MN                     | 2016     | 29                    | 4                     | 51                | 6    | 3       | 8                           |
| SK Rush                  | Canada                 | 2016     | 33                    | 4                     | 50                | 2    | NA      | 7                           |
| SY 611CL2                | Syngenta/AgriPro       | 2019     | 28                    | 3                     | 48                | 6    | 4       | 6                           |
| SY Ingmar                | Syngenta/AgriPro       | 2014     | 29                    | 3                     | 50                | 3    | 6       | 6                           |
| SY Longmire <sup>7</sup> | Syngenta/AgriPro       | 2019     | 29                    | 5                     | 49                | 6    | 4       | 6                           |
| SY McCloud               | Syngenta/AgriPro       | 2019     | 30                    | 4                     | 48                | 5    | 7       | 8                           |
| SY Valda                 | Syngenta/AgriPro       | 2015     | 29                    | 5                     | 49                | 2    | 7       | 6                           |
| TCG-Heartland            | 21st Century Genetics  | 2019     | 28                    | 3                     | 47                | 3    | 4       | 7                           |
| TCG-Spitfire             | 21st Century Genetics  | 2015     | 30                    | 3                     | 51                | 5    | 6       | 5                           |
| TCG-Wildcat              | 21st Century Genetics  | 2020     | 30                    | 3                     | 49                | 5    | 6       | 7                           |
| WB9590                   | WestBred               | 2017     | 27                    | 3                     | 48                | 3    | 8       | 8                           |

Table 1. North Dakota hard red spring wheat variety descriptions, agronomic traits, 2022.

<sup>1</sup> Refers to agent or developer: MN = University of Minnesota; MT = Montana State University; ND = North Dakota State University; SD = South Dakota State University; Canada = Agri-Food Canada. Bold varieties are those recently released, so data are limited and rating values may change.

<sup>2</sup> Height data averaged from multiple locations in 2022.

<sup>3</sup> Straw Strength = 1 to 9 scale, with 1 the strongest and 9 the weakest. These values are based on recent data and may change as more data become available.

<sup>4</sup> Days to Head = the number of days from planting to head emergence from the boot, averaged based on data from several locations in 2022.

<sup>5</sup>Disease reaction scores from 1 to 9, with 1 = resistant and 9 = very susceptible, NA = not available.

<sup>6</sup> All wheat varieties are resistant to moderately resistant to stem rust when screened using Puccinia graminis f. sp. tritici races TPMK, TMLK, RTQQ, QFCQ and QTHJ.

<sup>7</sup> Solid stemmed or semisolid stem, imparting resistance to sawfly.

Continued on next page 🔶

|                        | <u>Carri</u>   | ngton         | Cass | elton | Grand | Forks | Lan  | <u>gdon</u>        | Pro  | sper  | Ave  | rage  |
|------------------------|----------------|---------------|------|-------|-------|-------|------|--------------------|------|-------|------|-------|
| Variety                | 2022           | 3 Yr.         | 2022 | 3 Yr. | 2022  | 3 Yr. | 2022 | 3 Yr. <sup>1</sup> | 2022 | 2 Yr. | 2022 | 3 Yr. |
|                        |                |               |      |       |       | (bu   | ı/a) |                    |      |       |      |       |
| AAC Brandon            | 56.8           |               | 66.2 |       | 80.4  |       | 75.0 |                    | 66.4 |       | 69.0 |       |
| AAC Starbuck           | 60.7           |               | 69.5 | -     | 77.5  |       | 80.1 |                    | 55.9 |       | 68.7 |       |
| AAC Wheatland          | 54.8           |               | 70.2 | -     | 81.8  | -     | 75.7 |                    | 49.3 | -     | 66.4 |       |
| AP Gunsmoke CL2        | 57.7           | 54.0          | 72.9 |       | 86.1  |       | 80.6 |                    | 50.8 | 73.5  | 69.6 |       |
| AP Murdock             | 54.5           | 51.6          | 72.7 | 86.9  | 90.5  | 78.9  | 92.6 | 87.2               | 66.5 | 75.4  | 75.4 | 76.0  |
| AP Smith               | 53.4           | 48.9          | 67.8 |       | 82.2  |       | 79.8 |                    | 58.0 | 72.3  | 68.2 |       |
| Ascend-SD              | 60.3           |               | 72.2 |       | 94.4  |       | 89.9 |                    | 78.4 |       | 79.1 |       |
| Bolles                 | 46.1           | 45.7          | 74.4 | 77.0  | 83.1  | 69.7  | 71.0 | 70.5               | 42.0 | 61.7  | 63.3 | 64.9  |
| CAG-Justify            | 60.7           |               | 74.7 |       | 78.8  |       | 92.6 |                    | 50.3 | 70.9  | 71.4 |       |
| CAG-Reckless           | 53.3           |               | 74.6 |       | 82.7  |       | 82.3 |                    | 64.1 | 78.1  | 71.4 |       |
| CAG-Recoil             | 53.2           |               | 62.3 |       | 95.1  |       | 85.5 |                    | 75.3 |       | 74.3 |       |
| CP3099A                | 59.7           |               | 83.7 | -     | 87.8  | -     | 81.8 |                    | 57.9 | 78.2  | 74.2 |       |
| CP3188                 | 66.2           |               | 68.5 | -     | 76.0  |       | 80.5 |                    | 49.3 | 69.9  | 68.1 |       |
| CP3530                 | 58.7           | 54.4          | 71.9 | 85.3  | 86.5  | 77.6  | 86.7 | 82.7               | 63.9 | 70.3  | 73.5 | 74.1  |
| Dagmar                 | 62.8           | 56.0          | 68.4 | 80.8  | 89.3  | 75.6  | 68.7 |                    | 54.7 | 68.3  | 68.8 |       |
| Driver                 | 58.3           | 56.6          | 77.5 | 86.7  | 87.5  | 78.9  | 81.9 |                    | 51.6 | 73.6  | 71.4 |       |
| Faller                 | 59.4           | 56.7          | 71.0 | 82.8  | 81.5  | 77.2  | 85.7 | 83.3               | 69.9 | 80.5  | 73.5 | 76.1  |
| Glenn                  | 47.3           | 45.8          | 58.7 | 70.3  | 74.8  | 65.6  | 67.6 | 72.0               | 52.9 | 56.1  | 60.3 | 62.0  |
| Lanning                | 49.2           | 47.5          | 67.9 | 81.7  | 78.5  | 69.7  | 60.5 |                    | 60.2 | 71.1  | 63.3 |       |
| LCS Ascent             | 51.4           |               | 79.9 |       | 90.5  |       | 85.0 |                    | 57.1 |       | 72.8 |       |
| LCS Buster             | 57.6           | 50.3          | 80.6 | 92.4  | 86.4  | 79.5  | 86.4 |                    | 65.6 | 76.4  | 75.3 |       |
| LCS Cannon             | 55.5           | 48.6          | 76.7 | 91.5  | 92.3  | 77.0  | 85.8 | 76.7               | 52.5 |       | 72.6 |       |
| LCS Dual               | 65.9           |               | 76.4 | -     | 88.7  |       | 73.1 |                    | 46.2 |       | 70.1 |       |
| LCS Hammer AX          | 63.2           |               | 76.7 | -     | 87.8  | -     | 79.5 |                    | 63.6 | -     | 74.2 |       |
| LCS Rebel              | 64.4           | 55.4          | 76.9 | 82.0  | 78.9  | 76.3  | 76.7 | 77.8               | 64.3 | 76.7  | 72.2 | 73.6  |
| LCS Trigger            | 58.6           | 55.4          | 80.7 | 90.6  | 91.2  | 85.3  | 93.5 | 87.1               | 81.3 | 87.4  | 81.1 | 81.2  |
| MN-Rothsay             | 51.0           |               | 70.1 |       | 92.2  |       | 77.1 |                    | 60.4 |       | 70.2 |       |
| MN-Torgy               | 62.3           | 60.6          | 74.2 | 83.7  | 89.1  | 77.2  | 82.0 | 78.8               | 65.6 | 75.9  | 74.6 | 75.2  |
| MN-Washburn            | 51.1           | 49.2          | 71.2 | 80.8  | 90.9  | 74.7  | 80.1 | 77.9               | 59.4 | 72.9  | 70.5 | 71.1  |
| MS Barracuda           | 53.0           | 48.3          | 74.0 | 83.1  | 80.1  | 70.9  | 73.0 | 74.0               | 51.9 | 65.2  | 66.4 | 68.3  |
| MS Charger             | 60.9           |               | 86.9 |       | 94.9  |       | 89.6 |                    | 57.3 |       | 77.9 |       |
| MS Cobra               | 60.6           |               | 76.4 |       | 78.3  |       | 67.5 |                    | 47.9 | 66.8  | 66.2 |       |
| MS Ranchero            | 55.6           | 55.4          | 66.2 | 82.4  | 80.2  | 75.3  | 76.1 |                    | 50.4 | 62.3  | 65.7 |       |
| ND Frohberg            | 54.9           | 48.2          | 72.2 | 82.3  | 79.4  | 69.8  | 77.4 | 77.2               | 62.0 | 73.7  | 69.2 | 70.3  |
| ND Heron               | 48.5           | 42.8          | 66.7 |       | 79.1  |       | 68.0 | 71.1               | 56.5 |       | 63.8 |       |
| ND VitPro              | 59.5           | 56.5          | 56.1 | 71.8  | 80.3  | 69.5  | 71.1 | 73.4               | 60.6 | 69.3  | 65.5 | 68.1  |
| Shelly                 | 65.0           | 59.0          | 78.3 |       | 86.1  | 73.5  | 76.0 | 71.9               | 46.5 |       | 70.4 |       |
| SK Rush                | 46.9           |               | 60.5 |       | 74.8  |       | 75.5 |                    | 59.4 |       | 63.4 |       |
| SY 611CL2              | 57.3           | 48.8          | 67.1 | 81.4  | 82.2  | 72.9  | 81.6 | 80.9               | 58.5 | 76.2  | 69.3 | 72.0  |
| SY Ingmar              | 50.4           | 46.6          | 66.5 | 77.9  | 81.9  | 72.6  | 75.3 | 77.8               | 50.1 | 67.5  | 64.8 | 68.5  |
| SY Longmire            | 48.9           |               | 61.4 | 79.5  | 78.6  | 71.2  | 70.0 | 75.6               | 52.6 | 69.8  | 62.3 |       |
| SY McCloud             | 52.2           | 50.5          | 75.9 | 84.2  | 84.8  | 71.7  | 75.4 | 76.5               | 54.4 | 71.2  | 68.5 | 70.8  |
| SY Valda               | 55.2           | 53.9          | 71.8 | 85.8  | 93.9  | 77.6  | 86.1 | 81.7               | 62.6 | 77.2  | 73.9 | 75.2  |
| TCG-Heartland          | 45.0           | 44.3          | 70.9 | 79.0  | 88.1  | 72.0  | 68.4 | 69.9               | 48.9 | 65.1  | 64.3 | 66.1  |
| TCG-Spitfire           | 58.2           | 55.2          | 71.8 | 81.4  | 96.4  | 82.8  | 82.5 | 80.3               | 72.0 | 85.7  | 76.2 | 77.1  |
| TCG-Wildcat            | 54.8           | 49.1          | 79.6 | 83.7  | 90.9  | 78.4  | 76.1 |                    | 60.0 | 74.8  | 72.3 |       |
| WB9590                 | 56.7           |               | 78.9 |       | 97.4  |       | 74.4 |                    | 50.3 | 68.5  | 71.5 |       |
| Mean                   | 56.3           | 51.6          | 71.9 | 82.5  | 85.3  | 74.9  | 78.6 | 77.5               | 59.2 | 72.2  | 70.1 | 71.7  |
| CV%                    | 9.9            |               | 4.4  |       | 6.5   |       | 7.7  |                    | 12.1 |       | 8.2  |       |
| LSD 0.05               | 7.8            |               | 5.8  |       | 6.2   |       | 8.4  |                    | 8.1  |       | 7.1  |       |
| LSD 0.10               | 6.6            |               | 4.5  |       | 5.2   |       | 7.1  |                    | 6.8  |       | 6.0  |       |
| Langdon 3-year avg. in | cludes 2019, 2 | 2020 and 2022 |      |       |       |       |      |                    |      |       |      |       |

### **Table 2.** Yield of hard red spring wheat varieties grown at five locations in eastern North Dakota, 2020-2022.

|                 | Hetti | inger | Mar        | ıdan  | Mi   | not   | Will | iston | Ave  | rage  |
|-----------------|-------|-------|------------|-------|------|-------|------|-------|------|-------|
| Variety         | 2022  | 3 Yr. | 2022       | 3 Yr. | 2022 | 3 Yr. | 2022 | 3 Yr. | 2022 | 3 Yr. |
| ·               |       |       | •          |       | (bu  | ı/a)  |      |       |      |       |
| AAC Brandon     | 73.1  |       | 49.3       |       | 62.2 |       | 31.2 |       | 53.9 |       |
| AAC Starbuck    | 76.1  |       | 51.6       |       | 52.4 |       | 33.3 |       | 53.4 |       |
| AAC Wheatland   | 73.3  |       | 51.2       |       | 60.1 |       | 31.9 |       | 54.1 |       |
| AP Gunsmoke CL2 | 78.8  | 50.5  | 66.4       | 43.8  | 57.7 |       | 34.8 |       | 59.4 |       |
| AP Murdock      | 73.6  | 45.3  | 65.2       | 42.2  | 58.1 | 52.7  | 33.2 | 25.2  | 57.5 | 41.3  |
| AP Smith        | 76.5  | 44.2  | 58.5       | 42.0  | 58.6 |       | 36.1 |       | 57.4 |       |
| Ascend-SD       | 74.4  |       | 65.7       |       | 61.8 |       | 37.9 |       | 60.0 |       |
| Bolles          | 70.3  | 43.1  | 56.5       | 38.5  | 61.5 | 55.4  | 31.6 | 24.3  | 55.0 | 40.3  |
| CAG-Justify     | 82.4  |       | 67.2       |       | 66.7 |       | 33.8 |       | 62.5 |       |
| CAG-Reckless    | 75.2  |       | 57.9       |       | 56.3 |       | 36.1 |       | 56.4 |       |
| CAG-Recoil      | 76.4  |       | 66.6       |       | 66.9 |       | 37.7 |       | 61.9 |       |
| CP3099A         | 76.8  |       | 62.8       |       | 68.7 |       | 34.6 |       | 60.7 |       |
| CP3188          | 77.2  |       | 58.7       |       | 59.4 |       | 39.2 |       | 58.6 |       |
| CP3530          | 76.0  | 48.0  | 58.4       | 41.1  | 55.5 | 56.8  | 33.4 |       | 55.8 |       |
| Dagmar          | 82.6  | 51.7  | 57.7       | 39.0  | 60.9 | 53.7  | 30.7 | 26.9  | 58.0 | 42.8  |
| Driver          | 76.9  | 50.4  | 57.0       | 43.7  | 63.0 |       | 32.1 | 26.6  | 57.3 |       |
| Faller          | 79.2  | 50.8  | 61.2       | 44.3  | 72.0 | 64.6  | 31.1 | 28.0  | 60.9 | 46.9  |
| Glenn           | 71.2  | 45.3  | 54.6       | 38.6  | 56.6 | 50.5  | 27.0 | 25.5  | 52.4 | 40.0  |
| Lanning         | 77.3  | 48.9  | 56.0       | 41.9  | 63.4 | 55.9  | 34.6 | 28.9  | 57.8 | 43.9  |
| LCS Ascent      | 80.9  |       | 54.9       |       | 65.1 |       | 33.9 |       | 58.7 |       |
| LCS Buster      | 81.3  | 50.9  | 69.5       | 48.6  | 66.8 |       | 40.0 | 29.4  | 64.4 |       |
| LCS Cannon      | 79.6  | 50.7  | 56.6       | 38.7  | 59.2 | 52.9  | 28.1 | 24.0  | 55.9 | 41.6  |
| LCS Dual        | 80.2  |       | 55.1       |       | 72.7 |       | 32.8 |       | 60.2 |       |
| LCS Hammer AX   | 77.6  |       | 62.8       |       | 60.4 |       | 36.8 |       | 59.4 |       |
| LCS Rebel       | 78.2  | 51.0  | 58.5       | 40.8  | 61.0 | 56.5  | 34.9 | 28.4  | 58.2 | 44.2  |
| LCS Trigger     | 77.1  | 50.3  | 70.4       | 47.6  | 66.7 | 64.9  | 36.5 | 29.2  | 62.7 | 48.0  |
| MN-Rothsay      | 74.2  | 45.1  | 63.5       | 44.8  | 70.1 |       | 36.8 |       | 61.1 |       |
| MN-Torgy        | 77.1  | 49.0  | 65.7       | 45.1  | 65.4 | 58.7  | 36.0 | 28.1  | 61.0 | 45.2  |
| MN-Washburn     | 76.1  | 47.5  | 58.1       | 39.8  | 56.0 | 52.6  | 31.7 | 25.6  | 55.5 | 41.4  |
| MS Barracuda    | 82.8  | 49.3  | 57.3       | 37.7  | 61.6 | 57.7  | 28.9 | 25.5  | 57.6 | 42.5  |
| MS Charger      | 86.5  |       | 61.6       |       | 59.0 |       | 39.0 |       | 61.5 |       |
| MS Cobra        | 77.7  |       | 62.1       |       | 55.2 |       | 32.9 |       | 57.0 |       |
| MS Ranchero     | 78.2  | 51.0  | 64.3       | 46.8  | 52.1 |       | 33.3 | 27.0  | 57.0 |       |
| ND Frohberg     | 73.7  | 47.3  | 57.9       | 40.6  | 58.0 | 53.0  | 34.4 | 26.5  | 56.0 | 41.9  |
| ND Heron        | 74.3  | 48.0  | 54.2       | 37.7  | 55.9 |       | 30.5 |       | 53.7 |       |
| ND VitPro       | 71.6  | 44.0  | 51.1       | 38.0  | 54.2 | 48.5  | 28.8 | 24.8  | 51.4 | 38.8  |
| Shelly          | 78.9  |       | 60.9       |       | 63.8 | 56.8  | 32.1 |       | 58.9 |       |
| SK Rush         | 76.1  |       | 57.0       |       | 50.4 |       | 36.3 |       | 54.9 |       |
| SY 611CL2       | 81.4  | 50.3  | 60.7       | 41.7  | 56.5 | 57.4  | 36.4 | 29.6  | 58.7 | 44.8  |
| SY Ingmar       | 65.1  | 42.0  | 54.3       | 38.6  | 53.5 | 48.8  | 36.8 | 29.0  | 52.4 | 39.5  |
| SY Longmire     | 70.7  | 45.6  | 55.2       | 40.0  | 53.5 | 54.7  | 38.1 | 29.5  | 54.4 | 42.4  |
| SY McCloud      | 76.9  | 47.9  | 59.8       | 39.6  | 66.7 | 53.7  | 34.6 | 29.3  | 59.5 | 41.9  |
| SY Valda        | 74.8  | 48.1  | 60.8       | 44.6  | 57.4 | 51.4  | 35.4 | 26.9  | 57.1 | 42.7  |
| TCG-Heartland   | 73.2  | 46.5  | 51.0       | 36.2  | 58.7 | 54.7  | 30.1 | 20.9  | 53.3 | 41.2  |
| TCG-Spitfire    | 77.4  | 50.1  | 63.5       | 45.9  | 62.6 | 60.4  | 38.7 | 30.2  | 60.6 | 46.7  |
| TCG-Wildcat     | 75.5  | 46.5  | 63.9       | 41.5  | 61.3 |       | 38.2 | 29.1  | 59.7 | 40./  |
| WB9590          | 77.6  |       | 57.2       |       | 59.0 |       | 30.6 | 27.1  | 56.1 |       |
| Mean            | 76.6  | 47.8  | 57.2       | 41.6  | 60.9 | 55.3  | 30.6 | 27.3  | 57.7 | 42.8  |
| CV%             | 3.1   |       | 6.5        |       | 8.7  |       | 7.1  |       | 6.4  | 42.0  |
| LSD 0.05        | 2.8   |       | 4.5        |       | 8.6  |       | 4.0  |       | 5.1  |       |
| LSD 0.03        |       |       | 4.3<br>3.5 |       |      |       |      |       | 4.3  |       |
| LSD 0.10        | 2.2   |       | 3.3        |       | 7.2  |       | 3.3  |       | 4.3  |       |

**Table 3.** Yield of hard red spring wheat varieties grown at four locations in western North Dakota, 2020-2022.

Continued on next page 🔶

| Variety                | Carrington   | Casselton    | Grand<br>Forks | Langdon | Prosper | Hettinger | Mandan | Minot        | Williston    | State Avg. |
|------------------------|--------------|--------------|----------------|---------|---------|-----------|--------|--------------|--------------|------------|
|                        |              |              |                |         | (%      | ó)        |        |              |              |            |
| AAC Brandon            | 13.9         | 14.5         | 16.1           | 15.0    | 16.9    | 13.2      | 12.3   | 14.7         | 13.7         | 14.5       |
| AAC Starbuck           | 13.7         | 15.3         | 16.5           | 15.3    | 17.3    | 14.1      | 13.2   | 14.1         | 14.7         | 14.9       |
| AAC Wheatland          | 12.9         | 14.8         | 16.3           | 15.5    | 17.1    | 13.1      | 12.0   | 13.8         | 13.9         | 14.4       |
| AP Gunsmoke CL2        | 12.0         | 14.3         | 15.5           | 14.8    | 17.0    | 12.6      | 11.4   | 13.3         | 15.0         | 14.0       |
| AP Murdock             | 12.1         | 13.4         | 14.0           | 13.7    | 15.2    | 12.7      | 11.4   | 13.0         | 13.4         | 13.2       |
| AP Smith               | 12.5         | 14.1         | 15.0           | 14.7    | 15.4    | 13.1      | 12.1   | 13.4         | 14.6         | 13.9       |
| Ascend-SD              | 12.4         | 14.2         | 16.0           | 14.1    | 16.4    | 13.1      | 10.8   | 12.7         | 13.7         | 13.7       |
| Bolles                 | 14.1         | 15.9         | 16.5           | 15.8    | 17.4    | 13.6      | 13.4   | 13.9         | 16.0         | 15.2       |
| CAG-Justify            | 11.1         | 13.5         | 14.8           | 13.1    | 15.7    | 12.2      | 10.6   | 12.0         | 13.5         | 12.9       |
| CAG-Reckless           | 13.0         | 14.3         | 15.6           | 14.3    | 15.6    | 12.7      | 11.3   | 13.8         | 13.7         | 13.8       |
| CAG-Recoil             | 12.6         | 13.5         | 14.4           | 14.4    | 15.4    | 13.2      | 11.2   | 12.6         | 13.6         | 13.4       |
| CP3099A                | 11.6         | 12.6         | 13.8           | 12.5    | 14.6    | 11.7      | 10.8   | 12.1         | 12.2         | 12.4       |
| CP3188                 | 11.2         | 13.0         | 14.1           | 13.0    | 15.1    | 11.9      | 10.7   | 12.0         | 11.8         | 12.5       |
| CP3530                 | 12.7         | 14.5         | 15.1           | 14.7    | 16.2    | 13.3      | 11.4   | 14.3         | 14.3         | 14.1       |
| Dagmar                 | 13.1         | 14.5         | 15.8           | 15.6    | 16.4    | 12.4      | 11.5   | 14.8         | 15.9         | 14.4       |
| Driver                 | 12.0         | 13.9         | 15.0           | 13.9    | 15.7    | 12.5      | 11.5   | 13.4         | 14.2         | 13.6       |
| Faller                 | 11.7         | 13.3         | 14.9           | 13.6    | 15.2    | 12.2      | 11.7   | 12.1         | 13.3         | 13.0       |
| Glenn                  | 12.5         | 14.9         | 16.0           | 15.0    | 16.9    | 13.9      | 11.8   | 14.6         | 15.4         | 14.6       |
| Lanning                | 12.6         | 14.6         | 16.3           | 15.3    | 16.7    | 13.4      | 12.0   | 13.1         | 13.1         | 14.1       |
| LCS Ascent             | 11.5         | 13.4         | 13.8           | 13.6    | 15.4    | 12.0      | 11.0   | 13.5         | 13.6         | 13.1       |
| LCS Buster             | 10.9         | 12.0         | 12.9           | 12.5    | 13.1    | 11.6      | 9.7    | 11.5         | 12.0         | 11.8       |
| LCS Cannon             | 12.4         | 13.5         | 12.9           | 12.5    | 16.3    | 12.4      | 9.7    | 11.5         | 15.8         | 13.9       |
| LCS Dual               | 12.4         | 13.2         | 14.8           | 13.9    | 16.2    | 12.4      | 11.5   | 13.8         | 13.8         | 13.3       |
| LCS Hammer AX          | 12.0         | 13.2         | 14.3           | 13.9    | 15.5    | 12.0      | 11.1   | 13.7         | 13.2         | 13.3       |
| LCS Rebel              | 12.0         | 13.9         | 14.5           | 14.4    | 16.5    | 12.2      | 11.4   | 13.7         | 13.0         | 13.4       |
| LCS Trigger            | 12.4         | 14.3         | 13.4           | 12.1    | 13.1    | 11.3      | 9.4    | 11.4         | 12.6         | 11.8       |
| MN-Rothsay             | 12.0         | 13.9         | 14.8           | 12.1    | 15.1    | 12.5      | 9.4    | 13.0         | 13.3         | 13.4       |
| MN-Torgy               | 13.2         | 13.9         | 14.8           | 14.0    | 15.8    | 12.3      | 11.0   | 13.0         | 13.3         | 13.4       |
| MN-Washburn            | 12.8         | 14.3         | 15.8           | 14.7    | 16.6    | 12.4      | 11.2   | 13.1         | 13.1         | 13.7       |
| MS Barracuda           | 13.4         | 14.6         | 15.7           | 15.0    | 17.1    | 12.9      | 11.8   | 14.1         | 13.9         | 14.3       |
|                        | 10.2         |              | 13.7           | 12.5    | 17.1    | 12.1      | 10.6   |              | 1            | 14.3       |
| MS Charger<br>MS Cobra | 11.9         | 12.3<br>14.3 | 15.6           | 12.5    | 17.0    | 11.1      | 10.0   | 12.7<br>14.2 | 12.1<br>14.2 | 12.3       |
| MS Ranchero            | 11.9         | 14.3         | 13.0           | 14.2    | 17.0    | 12.6      | 12.2   | 13.5         | 13.3         | 13.4       |
|                        |              |              |                |         |         |           |        |              |              |            |
| ND Frohberg            | 12.7         | 13.5         | 15.4           | 14.2    | 16.0    | 13.5      | 11.9   | 13.9         | 14.9         | 14.0       |
| ND Heron               | 11.8         | 14.8         | 15.9           | 15.1    | 16.8    | 13.4      | 11.8   | 14.6         | 15.5         | 14.4       |
| ND VitPro              | 13.0<br>12.3 | 15.1         | 16.1           | 14.8    | 16.5    | 14.4      | 12.3   | 14.1         | 15.1         | 14.6       |
| Shelly<br>SK Duch      |              | 13.3         | 14.9           | 14.1    | 15.2    | 12.6      | 10.7   | 12.9         | 13.1         | 13.2       |
| SK Rush                | 12.8         | 15.0         | 16.0           | 14.9    | 16.6    | 13.2      | 11.6   | 13.9         | 14.2         | 14.2       |
| SY 611CL2              | 11.9         | 14.1         | 15.3           | 14.6    | 16.3    | 13.0      | 11.7   | 13.7         | 13.6         | 13.8       |
| SY Ingmar              | 13.3         | 14.5         | 15.6           | 15.0    | 15.9    | 14.2      | 12.6   | 14.4         | 15.1         | 14.5       |
| SY Longmire            | 13.5         | 14.1         | 15.0           | 15.2    | 15.9    | 12.8      | 12.0   | 13.5         | 14.5         | 14.1       |
| SY McCloud             | 14.6         | 14.4         | 15.7           | 15.0    | 16.1    | 13.9      | 12.4   | 14.5         | 14.6         | 14.6       |
| SY Valda               | 11.3         | 13.2         | 15.0           | 14.1    | 15.4    | 12.9      | 11.0   | 13.4         | 12.9         | 13.2       |
| TCG-Heartland          | 13.5         | 15.0         | 15.8           | 15.4    | 16.5    | 14.3      | 12.0   | 14.2         | 15.4         | 14.7       |
| TCG-Spitfire           | 12.8         | 13.4         | 14.1           | 13.6    | 14.5    | 13.2      | 11.4   | 12.8         | 13.1         | 13.2       |
| TCG-Wildcat            | 13.3         | 14.0         | 15.4           | 15.2    | 15.5    | 13.7      | 11.6   | 13.9         | 13.9         | 14.0       |
| WB9590                 | 12.0         | 14.5         | 15.3           | 15.0    | 16.8    | 13.5      | 11.8   | 13.8         | 14.9         | 14.2       |
| Mean                   | 12.4         | 14.0         | 15.2           | 14.3    | 15.9    | 12.8      | 11.5   | 13.4         | 13.9         | 13.7       |
| CV%                    | 7.7          | 1.3          | 2.0            | 2.8     | 2.1     | 3.5       | 4.0    | 4.8          | 4.4          | 3.3        |
| LSD 0.05               | 1.3          | 0.4          | 0.3            | 0.6     | 0.4     | 0.5       | 0.6    | 1.0          | 1.0          | 0.4        |
| LSD 0.10               | 1.1          | 0.3          | 0.3            | 0.5     | 0.3     | 0.4       | 0.5    | 0.9          | 0.8          | 0.4        |

### **Table 4.** Protein at 12% moisture of hard red spring wheat varieties grown at nine locations in North Dakota, 2022.

|             | <u>Carri</u> | <u>ngton</u> | <u>Dickinson</u> | <u>Average</u> |
|-------------|--------------|--------------|------------------|----------------|
| Variety     | 2022         | 3 Yr.        | 2022             | 2022           |
|             |              | (bu/         | /a)              |                |
| Barlow      | 16.3         | 17.3         | 58.4             | 37.3           |
| Bolles      | 16.2         | 16.8         | 48.8             | 32.5           |
| Ceres       | 11.5         | 15.3         | 52.9             | 32.2           |
| Dagmar      | 16.7         | 20.1         | 66.8             | 41.7           |
| Dapps       | 17.5         | 15.7         | 54.9             | 36.2           |
| Driver      | 19.0         |              | 51.9             | 35.4           |
| Elgin-ND    | 19.6         | 19.9         | 52.8             | 36.2           |
| FBC Dylan   | 14.6         | 17.5         | 59.2             | 36.9           |
| Faller      | 20.5         | 21.0         | 59.9             | 40.2           |
| Glenn       | 15.5         | 17.5         | 56.3             | 35.9           |
| Lang-MN     | 19.1         | 20.3         | 62.1             | 40.6           |
| Lanning     | 16.0         | 20.5         | 61.7             | 38.9           |
| Linkert     | 19.9         |              | 55.2             | 37.5           |
| MN Rothsay  | 14.8         |              |                  |                |
| MN Washburn | 17.1         | 16.3         | 54.2             | 35.6           |
| MN-Torgy    | 17.8         |              | 69.0             | 43.4           |
| Mida        | 12.6         | 16.4         | 45.8             | 29.2           |
| ND Frohberg | 15.8         | 19.6         | 51.6             | 33.7           |
| ND Heron    | 17.0         |              | 63.3             | 40.1           |
| ND VitPro   | 17.5         | 16.8         | 62.2             | 39.8           |
| Prosper     | 20.3         |              | 68.0             | 44.2           |
| Red Fife    | 16.4         | 22.2         | 51.6             | 34.0           |
| Shelly      | 17.2         | 17.5         | 59.6             | 38.4           |
| Mean        | 16.9         | 18.3         | 57.5             | 37.3           |
| CV%         | 9.6          |              | 14.1             |                |
| LSD 0.05    | 2.7          |              | 11.5             |                |
| LSD 0.10    | 2.2          |              | 9.6              |                |

Table 5. Yield of organic hard red spring wheat varieties grown at two locations in North Dakota, 2020-2022.

Continued on next page 🔶

**Table 6.** Quality data from 2018-2021. The Wheat Quality Index is a weighted average developed to summarize the relative milling and baking quality of lines in the trial. Data from across years are from 2018-2021 for all varieties which were tested in a minimum of two years (four locations per year) across North Dakota.

|               | Test                | Vitreous             | Wheat                | Farinograph             | Flour                   | Farinograph            | Loaf                | WQI               |
|---------------|---------------------|----------------------|----------------------|-------------------------|-------------------------|------------------------|---------------------|-------------------|
| Variety       | Weight <sup>1</sup> | Kernels <sup>2</sup> | Protein <sup>3</sup> | Absorption <sup>4</sup> | Extraction <sup>5</sup> | Stability <sup>6</sup> | Volume <sup>7</sup> | RANK <sup>8</sup> |
| v             | lb/bu               | %                    | 12% m.b.             | %                       | %                       | min                    | cm <sup>3</sup>     |                   |
| Bolles        | 61.3                | 80.1                 | 16.8                 | 65.4                    | 64.6                    | 22.8                   | 980.9               | 1                 |
| WB9479        | 62.7                | 77.8                 | 16.0                 | 63.4                    | 67.3                    | 19.0                   | 972.2               | 2                 |
| SY McCloud    | 63.1                | 75.7                 | 15.4                 | 67.0                    | 67.0                    | 11.2                   | 978.2               | 3                 |
| Glenn         | 64.1                | 88.9                 | 15.5                 | 65.3                    | 65.9                    | 14.6                   | 973.8               | 4                 |
| LCS Rebel     | 63.2                | 78.2                 | 15.1                 | 64.8                    | 68.7                    | 12.9                   | 981.8               | 5                 |
| SY Longmire   | 62.4                | 77.2                 | 15.1                 | 65.1                    | 67.5                    | 12.4                   | 1004.0              | 6                 |
| ND Frohberg   | 62.7                | 76.6                 | 14.8                 | 67.0                    | 66.3                    | 13.7                   | 950.7               | 7                 |
| AAC Brandon   | 62.1                | 77.9                 | 15.5                 | 66.4                    | 68.1                    | 11.9                   | 947.4               | 8                 |
| Dagmar        | 62.3                | 86.9                 | 15.5                 | 65.3                    | 66.6                    | 13.8                   | 966.1               | 9                 |
| TCG-Heartland | 63.1                | 75.6                 | 15.5                 | 64.3                    | 67.9                    | 15.0                   | 946.5               | 10                |
| ND VitPro     | 63.5                | 87.3                 | 15.5                 | 65.6                    | 67.4                    | 10.0                   | 965.8               | 11                |
| Lanning       | 61.4                | 83.3                 | 15.4                 | 64.3                    | 66.4                    | 11.3                   | 1015.3              | 12                |
| CP3530        | 61.7                | 68.8                 | 14.7                 | 64.8                    | 68.3                    | 11.3                   | 995.4               | 13                |
| SY Ingmar     | 62.7                | 78.7                 | 15.2                 | 63.7                    | 67.7                    | 13.3                   | 974.5               | 14                |
| MN-Rothsay    | 62.3                | 72.4                 | 15.0                 | 62.6                    | 67.8                    | 14.7                   | 993.8               | 15                |
| MN-Washburn   | 61.9                | 88.2                 | 14.6                 | 61.7                    | 69.9                    | 16.8                   | 975.6               | 16                |
| ND Hern       | 63.4                | 84.8                 | 15.5                 | 71.9                    | 64.4                    | 9.1                    | 945.2               | 17                |
| LCS Cannon    | 63.2                | 68.7                 | 14.7                 | 63.5                    | 68.9                    | 13.7                   | 964.8               | 18                |
| AP Murdock    | 61.7                | 62.3                 | 14.8                 | 65.1                    | 67.6                    | 13.6                   | 949.5               | 19                |
| Boost         | 61.4                | 80.6                 | 15.2                 | 65.7                    | 66.8                    | 10.2                   | 953.3               | 20                |
| WB9719        | 63.8                | 77.6                 | 15.2                 | 64.6                    | 66.4                    | 13.1                   | 929.3               | 21                |
| SY 611CL2     | 63.0                | 77.1                 | 14.9                 | 68.6                    | 65.4                    | 9.1                    | 927.4               | 22                |
| TCG-Spitfire  | 61.6                | 73.1                 | 14.3                 | 65.1                    | 65.8                    | 12.4                   | 966.7               | 23                |
| MS Ranchero   | 61.0                | 77.7                 | 14.6                 | 65.9                    | 65.3                    | 12.6                   | 941.6               | 24                |
| WB9590        | 62.4                | 76.4                 | 15.5                 | 63.9                    | 67.3                    | 13.8                   | 915.4               | 25                |
| MN-Torgy      | 62.5                | 70.3                 | 15.1                 | 62.9                    | 66.2                    | 15.3                   | 938.4               | 26                |
| TCG-Wildcat   | 62.9                | 78.4                 | 14.9                 | 64.5                    | 67.3                    | 8.9                    | 946.9               | 27                |
| Faller        | 61.7                | 69.9                 | 14.4                 | 64.6                    | 68.4                    | 10.3                   | 931.7               | 28                |
| Shelly        | 61.6                | 67.5                 | 14.3                 | 61.5                    | 68.3                    | 16.0                   | 909.7               | 29                |
| Driver        | 62.9                | 77.9                 | 14.7                 | 61.8                    | 67.6                    | 10.3                   | 927.7               | 30                |
| SY Valda      | 62.3                | 83.6                 | 14.4                 | 63.4                    | 66.4                    | 7.9                    | 896.2               | 31                |
| LCS Trigger   | 61.8                | 81.5                 | 13.2                 | 64.8                    | 67.9                    | 9.6                    | 813.2               | 32                |
| LCS Buster    | 60.1                | 68.0                 | 13.2                 | 58.6                    | 68.9                    | 15.1                   | 864.3               | 33                |
| Mean          | 62.4                | 77.2                 | 15.0                 | 64.6                    | 67.2                    | 12.9                   | 949.8               | 17.0              |

<sup>1</sup> Test weight - Expressed in pounds (lbs) per bushel. A high test weight is desirable. A 58 lb test weight is required for a grade of US No. 1.

<sup>2</sup> Vitreous kernels - Expressed as a percentage of seeds having a vitreous-colored endosperm. A high percentage is desirable. US No. 1 DNS requires greater than 75% vitreous kernels.

<sup>3</sup> Wheat Protein - Measured by NIR at a 12% moisture basis. A high protein is desirable for baking quality.

<sup>4</sup>Farinograph Absorption - Measured by NIR at a 14% moisture basis. A measure of dough water absorption, expressed as percent. A high absorption is desirable.

<sup>5</sup>Flour Extraction - Percentage of milled flour recovered from cleaned and tempered wheat. A high flour extraction percentage is desirable.

<sup>6</sup>Farinograph Stability - A measure of dough strength expressed in minutes above the 500 Brabender unit line during mixing. A high stability is desirable.

<sup>7</sup> Loaf Volume - The volume of the pup loaf of bread, expressed in cubic centimeters. A high volume is desirable.

<sup>8</sup>Standardized means were used to calculate the Wheat Quality Index (WQI). The WQI is a weighted index calculated as: Test Weight (5%); Vitreous kernel (5%); Wheat Protein (10%); Flour Extraction (10%); Farinograph Absorption (23.3%); Farinograph Stability (23.3%) and Loaf Volume (23.3%). Adjusted means across locations were calculated for each trait using a mixed model. These means were standardized (mean=0 and standard deviation=1) to remove the effect of scale, which vary between traits.

**Table 7.** Quality data from 2021 from four locations across North Dakota. The Wheat Quality Index is a weighted average developed to summarize the relative milling and baking quality of lines in the trial. Data from 2021 are for all varieties which were tested in the 2022 trial. Data were collected from Carrington, Thompson, Hettinger, and Prosper, North Dakota.

|                 | Test                | Vitreous             | Wheat                | Farinograph             | Flour                   | Farinograph            | Loaf                | WQI               |
|-----------------|---------------------|----------------------|----------------------|-------------------------|-------------------------|------------------------|---------------------|-------------------|
| Variety         | Weight <sup>1</sup> | Kernels <sup>2</sup> | Protein <sup>3</sup> | Absorption <sup>4</sup> | Extraction <sup>5</sup> | Stability <sup>6</sup> | Volume <sup>7</sup> | RANK <sup>8</sup> |
|                 | lb/bu               | %                    | 12% m.b.             | %                       | %                       | min                    | cm                  |                   |
| CP3530          | 61.4                | 91.2                 | 15.1                 | 64.5                    | 70.3                    | 18.5                   | 1046.1              | 1                 |
| MS Cobra        | 62.2                | 93.5                 | 15.0                 | 65.5                    | 68.4                    | 16.2                   | 1064.5              | 2                 |
| SY Longmire     | 62.5                | 93.6                 | 14.6                 | 63.8                    | 68.5                    | 20.9                   | 1043.9              | 3                 |
| SY McCloud      | 63.4                | 93.5                 | 15.4                 | 66.6                    | 68.5                    | 16.9                   | 967.9               | 4                 |
| Lanning         | 61.6                | 93.6                 | 15.1                 | 63.5                    | 69.3                    | 18.3                   | 1040.7              | 5                 |
| WB9479          | 62.9                | 92.7                 | 15.9                 | 63.2                    | 68.1                    | 23.1                   | 971.2               | 6                 |
| Dagmar          | 62.4                | 93.7                 | 15.3                 | 64.8                    | 66.8                    | 20.5                   | 970.1               | 7                 |
| MN-Washburn     | 62.3                | 94.3                 | 14.6                 | 61.0                    | 70.0                    | 25.1                   | 999.4               | 8                 |
| TCG-Heartland   | 63.0                | 91.9                 | 15.7                 | 63.6                    | 67.7                    | 20.3                   | 958.1               | 9                 |
| CAG-Reckless    | 62.5                | 91.0                 | 15.0                 | 64.5                    | 65.8                    | 19.5                   | 997.2               | 10                |
| LCS Rebel       | 63.2                | 94.0                 | 15.1                 | 63.5                    | 68.8                    | 18.8                   | 961.4               | 11                |
| AP smith        | 61.8                | 90.0                 | 14.9                 | 62.4                    | 66.9                    | 22.6                   | 1003.7              | 12                |
| LCS Cannon      | 63.6                | 88.7                 | 14.6                 | 62.3                    | 68.9                    | 21.4                   | 967.9               | 13                |
| TCG Spitfire    | 61.3                | 91.7                 | 14.6                 | 64.7                    | 67.0                    | 17.1                   | 982.0               | 14                |
| Glenn           | 64.1                | 94.0                 | 15.2                 | 64.5                    | 66.0                    | 19.5                   | 927.7               | 15                |
| ND VitPro       | 63.3                | 94.2                 | 15.5                 | 64.8                    | 67.0                    | 14.5                   | 945.1               | 16                |
| Bolles          | 61.4                | 90.8                 | 16.6                 | 64.6                    | 64.7                    | 22.9                   | 903.8               | 17                |
| AP Murdock      | 61.5                | 88.1                 | 14.8                 | 63.6                    | 67.9                    | 18.2                   | 955.9               | 18                |
| SY 611CL2       | 63.0                | 93.5                 | 14.7                 | 67.5                    | 65.4                    | 14.0                   | 948.3               | 19                |
| ND Frohberg     | 62.7                | 92.4                 | 14.8                 | 66.1                    | 66.0                    | 18.9                   | 889.7               | 20                |
| MN-Rothsay      | 62.8                | 90.0                 | 14.8                 | 61.9                    | 67.9                    | 17.7                   | 991.8               | 21                |
| SY Ingmar       | 62.7                | 94.2                 | 15.0                 | 62.8                    | 67.4                    | 19.3                   | 940.7               | 22                |
| WB9590          | 62.7                | 90.6                 | 15.2                 | 63.5                    | 67.3                    | 19.1                   | 920.1               | 23                |
| MN-Torgy        | 62.9                | 92.8                 | 14.9                 | 61.8                    | 67.1                    | 20.9                   | 961.4               | 24                |
| Ascend-SD       | 61.4                | 94.2                 | 15.0                 | 63.1                    | 66.2                    | 15.0                   | 1003.6              | 25                |
| MS Ranchero     | 61.9                | 92.6                 | 14.3                 | 65.2                    | 66.0                    | 16.6                   | 925.5               | 26                |
| AP Gunsmoke CL2 | 61.5                | 92.3                 | 15.4                 | 61.5                    | 67.7                    | 18.6                   | 945.1               | 27                |
| TCG-Wildcat     | 62.7                | 93.8                 | 14.7                 | 63.3                    | 67.7                    | 12.7                   | 945.1               | 28                |
| ND Heron        | 63.6                | 93.7                 | 15.5                 | 71.5                    | 63.8                    | 12.0                   | 886.4               | 29                |
| Driver          | 63.1                | 91.3                 | 14.4                 | 60.6                    | 68.8                    | 15.0                   | 951.6               | 30                |
| Faller          | 61.6                | 89.6                 | 14.4                 | 64.0                    | 68.3                    | 14.7                   | 870.2               | 31                |
| CP3188          | 61.0                | 86.0                 | 13.7                 | 59.5                    | 68.4                    | 24.0                   | 906.0               | 32                |
| CAG-Justify     | 59.4                | 93.5                 | 14.1                 | 62.1                    | 68.6                    | 12.9                   | 908.2               | 33                |
| SY Valda        | 62.5                | 93.9                 | 14.6                 | 62.8                    | 66.1                    | 12.0                   | 869.1               | 34                |
| CP3099A         | 59.2                | 89.5                 | 13.2                 | 60.6                    | 67.2                    | 17.7                   | 936.4               | 35                |
| LCS Trigger     | 61.3                | 92.8                 | 13.6                 | 62.9                    | 67.1                    | 15.2                   | 835.4               | 36                |
| LCS Buster      | 60.2                | 85.3                 | 13.0                 | 56.6                    | 69.0                    | 20.2                   | 834.3               | 37                |
| Mean            | 62.0                | 92.1                 | 14.8                 | 63.3                    | 67.5                    | 17.9                   | 955.6               |                   |

See footnotes below Table 6.



# North Dakota barley yields 2022

#### Clair Keene

Barley was seeded on 740,000 acres in North Dakota in 2022, up from 580,000 acres in 2021. The average state yield was estimated at 73 bushels per acre, up from 51 bushels per acre during the drought of 2021. In much of the state, barley along with other crops were seeded late after April blizzards and May rains delayed planting. Barley yields in eastern North Dakota were good with variety trials averaging 95.5, 85.1, and 102.5 busxhels per acre at Fargo, Carrington, and Langdon, respectively. In western North Dakota, trials at Glen Ullin, Hettinger, Minot, and Williston yielded 62.0, 99.4, 87.8, and 36.9 bushels per acre, respectively. AAC Synergy, ND Genesis, and Brewski were top yielders in eastern locations. In the west, ABI Cardinal was the highest yielding variety across all locations. CDC Austenson was only planted at Minot and Hettinger but was the highest yielding at both. No major issues with plump or protein were observed with trials averaging 92.4% plump and 11.0% protein in the east and 92% plump and 11.5% protein in the west.

|                     |                  |                     |                  |                          | Rachilla                    |                   |                  |                 |                                |              | Reaction to             | Disease <sup>6</sup> |               |
|---------------------|------------------|---------------------|------------------|--------------------------|-----------------------------|-------------------|------------------|-----------------|--------------------------------|--------------|-------------------------|----------------------|---------------|
| Variety             | Use <sup>1</sup> | Origin <sup>2</sup> | Year<br>Released | Awn <sup>3</sup><br>Type | Hair <sup>4</sup><br>Length | Aleurone<br>Color | Height<br>(inch) | Days to<br>Head | Straw <sup>5</sup><br>Strength | Stem<br>Rust | Spot-form<br>Net Blotch | Spot<br>Blotch       | Net<br>Blotch |
| Six-rowed           |                  |                     |                  |                          |                             |                   |                  |                 |                                |              |                         |                      |               |
| Tradition           | M/F              | BARI                | 2003             | S                        | L                           | White             | 30               | 48              | 3                              | 8            | 6                       | 3                    | 7             |
| Two-rowed           |                  |                     |                  |                          |                             |                   |                  |                 |                                |              |                         |                      |               |
| AAC Connect         | M/F              | Can.                | 2017             | R                        | L                           | White             | 27               | 55              | 4                              | 4            | 5                       | 4                    | 5             |
| AAC Synergy         | M/F              | Syngenta            | 2015             | R                        | L                           | White             | 29               | 55              | 4                              | 4            | 3                       | 4                    | 4             |
| ABI Cardinal        | M/F              | BARI                | 2019             | R                        | S                           | White             | 28               | 56              | 4                              | NA           | NA                      | 4                    | 6             |
| Brewski             | М                | ND                  | 2021             | S                        | L                           | White             | 28               | 54              | 4                              | NA           | NA                      | 4                    | 4             |
| CDC Austenson       | F                | CDC                 | 2009             | R                        | S                           | White             | 29               | 57              | 2                              | NA           | NA                      | 2                    | 2             |
| CDC Churchill       | M/F              | CDC                 | 2019             | R                        | L                           | White             | NA               | NA              | 3                              | NA           | 3                       | 3                    | NA            |
| CDC Fraser          | M/F              | CDC                 | 2016             | R                        | L                           | White             | 27               | 56              | 2                              | NA           | NA                      | 4                    | 4             |
| Conlon <sup>7</sup> | M/F              | ND                  | 1996             | S                        | L                           | White             | 28               | 49              | 5                              | 8            | 4                       | 6                    | 3             |
| Explorer            | М                | Secobra             | NA               | R                        | L                           | White             | 24               | 55              | 3                              | NA           | NA                      | 8                    | 4             |
| ND Genesis          | M/F              | ND                  | 2015             | S                        | L                           | White             | 30               | 52              | 4                              | 8            | 4                       | 4                    | 6             |
| Pinnacle            | M/F              | ND                  | 2006             | S                        | L                           | White             | 29               | 50              | 3                              | 8            | 8                       | 5                    | 6             |

Table 1. 2022 North Dakota barley variety descriptions.

Bolded varieties were tested for the first time this year, so some ratings may change as new data become available.

<sup>1</sup> M = malting; F = feed.

<sup>2</sup> BARI = Busch Agricultural Resources Inc.; CDC = Crop Development Centre, University of Saskatchewan; ND = North Dakota State University

<sup>3</sup> R = rough; S = smooth.

<sup>4</sup> L = long S = short. <sup>5</sup> Straw Strength scores from 1-9, with 1 = strongest and 9 = weakest.

<sup>6</sup> Disease reaction scores from 1-9, with 1 = strongest and 9 = very susceptible, NA – not available.

<sup>7</sup> Lower DON accumulations than other varieties tested.

|               |         | <u>Fargo</u> |       |         | Carringto | n     |         | Langdon | 1     | A       | vg.eastern | N.D.  |
|---------------|---------|--------------|-------|---------|-----------|-------|---------|---------|-------|---------|------------|-------|
|               | Test    | Yie          | eld   | Test    | Yi        | eld   | Test    | Yi      | eld   | Test    | Y          | ield  |
| Variety       | Wt.     | 2022         | 3 Yr. | Wt.     | 2022      | 3 Yr. | Wt.     | 2022    | 3 Yr. | Wt.     | 2022       | 3 Yr. |
|               | (lb/bu) | (bu          | ı/a)  | (lb/bu) | (bı       | u/a)  | (lb/bu) | (bu     | ı/a)  | (lb/bu) | (b         | ou/a) |
| Six-rowed     |         |              |       |         |           |       |         |         |       |         |            |       |
| Tradition     | 48.5    | 105.8        | 117.1 | 48.5    | 81.9      | 73.6  | 50.0    | 98.5    | 98.8  | 49.0    | 95.4       | 96.5  |
| Two-rowed     |         |              |       |         |           |       |         |         |       |         |            |       |
| AAC Connect   | 49.9    | 93.6         | 103.0 | 46.9    | 86.7      | 74.3  | 49.5    | 100.1   | 105.5 | 48.8    | 93.5       | 94.3  |
| AAC Synergy   | 49.9    | 104.2        | 103.2 | 48.8    | 94.0      | 77.1  | 50.5    | 105.2   | 109.8 | 49.7    | 101.1      | 96.7  |
| ABI Cardinal  | 51.2    | 94.2         | 102.7 | 48.1    | 85.3      |       | 50.6    | 103.3   | 98.3  | 50.0    | 94.3       |       |
| Brewski       | 49.5    | 99.0         | 100.1 | 46.7    | 87.8      |       | 50.1    | 108.6   |       | 48.8    | 98.5       |       |
| CDC Austenson |         |              |       | 52.6    | 89.7      |       |         |         |       |         |            |       |
| CDC Fraser    | 49.2    | 91.1         | 97.5  | 47.2    | 81.4      |       | 49.4    | 105.2   |       | 48.6    | 92.6       |       |
| Conlon        | 50.5    | 82.6         | 92.8  | 48.4    | 78.6      | 67.1  | 51.1    | 100.0   | 88.7  | 50.0    | 87.1       | 82.9  |
| Explorer      | 54.2    | 81.5         | 95.8  | 47.7    | 85.5      | 73.2  | 48.9    | 105.6   | 95.1  | 50.3    | 90.9       | 88.0  |
| ND Genesis    | 50.9    | 111.0        | 111.7 | 46.4    | 87.0      | 71.6  | 48.8    | 100.4   | 107.5 | 48.7    | 99.5       | 96.9  |
| Pinnacle      | 49.4    | 92.0         | 100.0 | 48.2    | 78.5      | 70.7  | 51.6    | 98.5    | 96.2  | 49.7    | 89.7       | 89.0  |
| Mean          | 50.3    | 95.5         | 102.4 | 48.1    | 85.1      | 72.5  | 50.1    | 102.5   | 100.0 | 49.4    | 94.2       | 92.0  |
| CV%           |         | 7.8          |       | 2.1     | 8.6       |       | 1.1     | 5.0     |       | 2.4     | 6.1        |       |
| LSD 0.05      |         | 11.8         |       | 1.4     | 10.5      |       | 0.8     | 7.6     |       | NS      | NS         |       |
| LSD 0.10      |         | 9.9          |       | 1.2     | 8.8       |       | 0.7     | 6.3     |       | 1.7     | NS         |       |

Table 2. Yield and test weight of barley varieties at three locations in eastern North Dakota, 2020-2022.

Table 3. Plump and protein of barley varieties at three locations in eastern North Dakota, 2022.

|               | Fa    | rgo     | Carr  | ington  | Lan   | gdon    | Avg. ea | stern N.D. |
|---------------|-------|---------|-------|---------|-------|---------|---------|------------|
| Variety       | Plump | Protein | Plump | Protein | Plump | Protein | Plump   | Protein    |
|               | (%)   | (%)     | (%)   | (%)     | (%)   | (%)     | (%)     | (%)        |
| Six-rowed     |       |         |       |         |       |         |         |            |
| Tradition     | 69.7  | 12.7    | 95    | 11.8    | 95    | 10.9    | 86.7    | 11.8       |
| Two-rowed     |       |         |       |         |       |         |         |            |
| AAC Connect   | 81.1  | 12.0    | 90    | 11.1    | 95    | 10.3    | 88.6    | 11.1       |
| AAC Synergy   | 87.1  | 12.3    | 96    | 10.9    | 97    | 10.4    | 93.3    | 11.2       |
| ABI Cardinal  | 85.1  | 12.5    | 95    | 10.7    | 97    | 10.3    | 92.5    | 11.2       |
| Brewski       | 91.6  | 11.2    | 96    | 11.0    | 96    | 10.1    | 94.7    | 10.8       |
| CDC Austenson |       |         | 92    | 10.8    |       |         |         |            |
| CDC Fraser    | 88.7  | 13.1    | 95    | 11.1    | 97    | 10.3    | 93.5    | 11.5       |
| Conlon        | 90.2  | 12.6    | 96    | 11.7    | 98    | 10.5    | 94.9    | 11.6       |
| Explorer      | 91.4  | 11.5    | 93    | 10.8    | 95    | 9.7     | 93.2    | 10.7       |
| ND Genesis    | 92.1  | 10.2    | 95    | 10.1    | 95    | 9.7     | 93.9    | 10.0       |
| Pinnacle      | 85.0  | 10.9    | 96    | 10.2    | 97    | 10.0    | 92.6    | 10.4       |
| Mean          | 86.2  | 11.9    | 95    | 10.9    | 96    | 10.2    | 92.4    | 11.0       |
| CV %          |       |         | 2.1   | 4.6     | 1.8   | 4.6     |         |            |
| LSD 0.05      |       |         | 2.8   | 0.7     | 2.4   | 0.7     |         |            |
| LSD 0.10      |       |         | 2.4   | 0.6     | 2.0   | 0.6     |         |            |

|                                | 6          | Glen Ullin | L       | J       | Hettinger | •     |         | <u>Minot</u> |       | 1       | Williston |       | Avg.    | western | N.D.               |
|--------------------------------|------------|------------|---------|---------|-----------|-------|---------|--------------|-------|---------|-----------|-------|---------|---------|--------------------|
|                                | Test       | Yie        | eld     | Test    | Yie       | eld   | Test    | Yi           | eld   | Test    | Yie       | ld    | Test    | Yie     | eld                |
| Variety                        | Wt.        | 2022       | 3 Yr.   | Wt.     | 2022      | 3 Yr. | Wt.     | 2022         | 3 Yr. | Wt.     | 2022      | 3 Yr. | Wt.     | 2022    | 3 Yr. <sup>1</sup> |
|                                | (lb/bu)    | (bu        | /a)     | (lb/bu) | (bu       | ı∕a)  | (lb/bu) | (bı          | u/a)  | (lb/bu) | (bu       | /a)   | (lb/bu) | (bu     | ı/a)               |
| Six-rowed                      |            |            |         |         |           |       |         |              |       |         |           |       |         |         |                    |
| Tradition                      | 45.8       | 41.0       | 60.9    | 47.5    | 101.6     | 62.1  | 45.1    | 84.0         | 94.3  | 45.8    | 41.8      | 31.8  | 46.1    | 67.1    | 62.3               |
| Two-rowed                      |            |            |         |         |           |       |         |              |       |         |           |       |         |         |                    |
| AAC Connect                    | 44.4       | 62.1       |         | 47.0    | 94.6      | 61.3  | 45.8    | 90.0         | 104.6 | 45.4    | 41.2      | 31.0  | 45.6    | 72.0    |                    |
| AAC Synergy                    | 46.0       | 56.9       | 79.4    | 47.8    | 103.4     | 64.1  | 44.5    | 85.1         | 101.7 | 45.2    | 42.1      | 31.4  | 45.9    | 71.9    | 69.1               |
| ABI Cardinal                   | 47.1       | 68.3       |         | 47.7    | 93.9      | 62.9  | 47.7    | 95.6         | 102.8 | 46.0    | 47.3      |       | 47.1    | 76.3    |                    |
| Brewski                        | 45.4       | 74.0       |         | 47.1    | 105.1     | 70.0  | 45.6    | 82.5         |       | 43.9    | 37.1      |       | 45.5    | 74.7    |                    |
| CDC Austenson                  |            |            |         | 50.1    | 111.9     |       | 47.1    | 94.4         |       |         |           |       |         |         |                    |
| CDC Fraser                     | 45.8       | 63.8       |         | 46.9    | 101.2     |       | 46.0    | 86.4         |       | 45.5    | 37.7      |       | 46.0    | 72.3    |                    |
| Conlon                         |            |            |         | 48.5    | 95.2      | 55.2  | 47.5    | 90.1         | 93.1  | 46.9    | 27.2      | 28.5  |         |         |                    |
| Explorer                       |            |            |         | 46.6    | 105.3     | 67.6  | 47.5    | 93.0         | 103.4 | 46.7    | 41.6      | 35.0  |         |         |                    |
| ND Genesis                     | 45.4       | 67.6       | 80.8    | 47.9    | 95.6      | 66.9  | 44.9    | 86.4         | 105.1 | 44.2    | 37.6      | 32.4  | 45.6    | 71.8    | 71.3               |
| Pinnacle                       |            |            |         | 46.2    | 85.7      | 59.9  | 45.2    | 78.8         | 99.0  | 46.6    | 34.0      | 31.4  |         |         |                    |
| Mean                           | 45.7       | 62.0       | 73.7    | 47.6    | 99.4      | 63.3  | 46.1    | 87.8         | 100.5 | 45.6    | 36.9      | 31.6  | 46.0    | 72.3    | 67.6               |
| CV %                           | 1.3        | 8.3        |         | 1.6     | 5.2       |       | 1.6     | 4.9          |       | 1.4     | 8.5       |       | 1.7     | 8.5     |                    |
| LSD 0.05                       | 0.9        | 7.4        |         | 0.9     | 6.1       |       | 1.2     | 7.4          |       | 1.1     | 5.2       |       | 1.2     | NS      |                    |
| LSD 0.10                       | 0.7        | 6.1        |         | 0.7     | 4.7       |       | 1.0     | 6.1          |       | 0.9     | 4.3       |       | 1.0     | 7.6     |                    |
| <sup>1</sup> Glen Ullin exclud | ed from th | ree-year a | werage. |         |           |       |         |              |       |         |           |       |         |         |                    |

**Table 4.** Yield and test weight of barley varieties at four locations in western North Dakota, 2020-2022.

 Table 5. Plump and protein of barley varieties at four locations in western North Dakota, 2022.

|               | Glen  | Ullin   | Hett  | inger   | Minot   | Willisto | Avg. west | ern N.D. |
|---------------|-------|---------|-------|---------|---------|----------|-----------|----------|
| Variety       | Plump | Protein | Plump | Protein | Protein | Protein  | Plump     | Protein  |
|               |       |         | <br>  |         | (%)-    |          |           |          |
| Six-rowed     |       |         |       |         |         |          |           |          |
| Tradition     | 95    | 11.7    | 91    | 13.9    | 12.3    | 11.4     | 93        | 12.3     |
| Two-rowed     |       |         |       |         |         |          |           |          |
| AAC Connect   | 88    | 11.3    | 85    | 12.9    | 11.8    | 10.3     | 87        | 11.6     |
| AAC Synergy   | 93    | 10.6    | 92    | 12.4    | 12.9    | 10.8     | 92        | 11.7     |
| ABI Cardinal  | 95    | 11.2    | 90    | 12.4    | 11.9    | 9.9      | 93        | 11.4     |
| Brewski       | 95    | 9.8     | 90    | 11.7    | 11.6    | 11.2     | 93        | 11.1     |
| CDC Austenson |       |         | 89    | 12.3    | 12.3    |          |           |          |
| CDC Fraser    | 96    | 11.5    | 91    | 12.4    | 12.9    | 11.3     | 94        | 12.0     |
| Conlon        |       |         | 95    | 13.1    | 12.7    | 11.0     |           |          |
| Explorer      |       |         | 86    | 13.6    | 11.8    | 10.2     |           |          |
| ND Genesis    | 94    | 9.6     | 92    | 11.2    | 10.8    | 9.7      | 93        | 10.3     |
| Pinnacle      |       |         | 85    | 11.7    | 10.7    | 9.5      |           |          |
| Mean          | 94    | 10.8    | 90    | 12.5    | 12.0    | 10.4     | 92        | 11.5     |
| CV %          | 2.0   | 4.0     | 3.1   | 5.8     | 3.4     | 5.5      |           |          |
| LSD 0.05      | 3     | 0.6     | 3.2   | 0.8     | 0.6     | 0.9      |           |          |
| LSD 0.10      | 2     | 0.5     | 2.5   | 0.7     | 0.5     | 0.8      |           |          |

| NOTES |  |
|-------|--|
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |

| NOTES |  |
|-------|--|
|       |  |
| <br>  |  |
|       |  |
|       |  |
| <br>  |  |
| <br>  |  |
|       |  |
| <br>  |  |
|       |  |
|       |  |
|       |  |
| <br>  |  |

/

| NOTES |      |
|-------|------|
|       | <br> |
|       |      |
|       | _    |
|       |      |
|       | _    |
|       | _    |
|       |      |
|       | _    |
|       | _    |
|       | _    |
|       | _    |
|       | _    |

χ.

| NOTES |  |
|-------|--|
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |

/

| NOTES |  |
|-------|--|
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |



2600 Wheat Drive Red Lake Falls, MN 56750 Ph: (218)-253-4311 www.mnwheat.com

# Thank you to our sponsors







The report of research projects are advised by the Minnesota Wheat Research Committee and are funded in part by the Minnesota Wheat Check-off. Sponsors that help fund this book are the Minnesota Wheat Research & Promotion Council, Minnesota Corn Research & Promotion Council and Minnesota Soybean Research & Promtion Council.